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ABSTRACT
Learning to rank is an important problem in many scenar-
ios, such as information retrieval, natural language process-
ing, recommender systems, etc. The objective is to learn
a function that ranks a number of instances based on their
features. In the vast majority of the learning to rank litera-
ture, there is an implicit assumption that the population of
ranking instances are homogeneous, and thus can be mod-
eled by a single central ranking function. In this work, we
are concerned with learning to rank for a heterogeneous pop-
ulation, which may consist of a number of sub-populations,
each of which may rank objects differently. Because these
sub-populations are not known in advance, and are effec-
tively latent, the problem turns into simultaneously learning
both a set of ranking functions, as well as the latent assign-
ment of instances to functions. To address this problem in
a joint manner, we develop a probabilistic graphical model
called Plackett-Luce Regression Mixture or PLRM model,
and describe its inference via Expectation-Maximization al-
gorithm. Comprehensive experiments on publicly-available
real-life datasets showcase the effectiveness of PLRM, as
opposed to a pipelined approach of clustering followed by
learning to rank, as well as approaches that assume a single
ranking function for a heterogeneous population.

Keywords
Mixture model; Graphical model; Plackett-Luce; Heteroge-
neous Ranking; Learning to rank

1. INTRODUCTION
Learning to rank is a machine learning approach to rank

objects based on their features [6]. It has found applications
in many areas. In information retrieval [24], we would like
to know which search result is more relevant to a query, and
thus should be ranked higher. In recommender system [38,
27], it is important to determine which item is preferred by a
user, and thus should be recommended to the user. Several
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natural language processing tasks may also involve ranking,
such as text summarization [34] or keyphrase extraction [18].

The key idea behind learning to rank is to learn a ranking
function that maps feature vectors to rank scores or rank or-
ders. This function is learned from data consisting of rank-
ings or ranked list of objects. An implicit assumption in
many scenarios is that these rankings come from a homo-
geneous population. In other words, there is one way to
rank objects based on their features, which is represented
by a central ranking function. This assumption of a cen-
tral ranking function may very well be applicable to some
scenarios, such as homepage finding or named page finding,
where most users would practically agree on the rankings.

Problem Yet there are other scenarios where there may
be more than one way to rank objects based on their fea-
tures. In this paper, we consider the problem of modeling
rankings for a heterogeneous population. In such a popu-
lation, there may be several sub-populations that rank ob-
jects differently. We call such sub-populations “preference
groups”. For instance, when shopping for cameras, con-
sumers may have diverse preferences with respect to the at-
tributes of a camera, and therefore varied ways for ranking
cameras. Professionals may rank DSLRs highly for its cus-
tomizability, while casual users may prefer point-and-shoot
cameras for its portability. In a voting electorate [13, 14],
there may be several preference groups that rank electoral
candidates differently based on where they stand on issues.
Thus a single ranking function would not be able to represent
diverse preference groups in a heterogeneous population.

If only these preference groups were identifiable or known
in advance, then the problem would devolve into employ-
ing learning to rank separately within each preference group
independently. On the contrary, in many cases we merely
observe the diverse rankings within a population. Discover-
ing the preference groups is inherently part of the problem.

The problem can thus be informally stated as follows.
Given a set of objects and their feature vectors, as well as a
set of ranked lists defined over these objects, we seek to learn
K latent preference groups and correspondingly K ranking
functions, one for each preference group. The population
of ranked lists is heterogeneous, i.e., there may be different
permutations of the same set of objects in the data.

Approach One way to think about the problem is to
consider it as an amalgamation of two requisite components:
discovering the preference groups, and employing learning to
rank within each group.

To discover the preference groups, it is not appropriate to
employ clustering in the feature space. The reason is that



heterogeneity in our context concerns the variance in rank-
ings over objects with similar features. Therefore, it is more
relevant to consider clustering in the ranking space. For this,
we turn to mixture models for ranking distributions.

While there are several models for estimating the distri-
bution over rankings [29], as reviewed in Section 2, we build
on the Plackett-Luce model [36, 25], which is widely ap-
plicable and lends itself to maximum likelihood estimation.
It is based on Luce’s Choice Axiom [26], which states that
the probability of choosing one item over another is not af-
fected by the presence or absence of other items in the pool.
This axiom is frequently cited in economics for modeling
consumer behavior when choosing one product over another
[3]. Plackett-Luce model is characterized by a set of item-
specific parameters, as described in Section 4. In this case,
each preference group is associated with a set of Plackett-
Luce parameters. The K preference groups could therefore
be modeled as a mixture of K Plackett-Luce models [13, 14].

One limitation of a ranking model such as Plackett-Luce
is that it is defined over a finite set of objects. Therefore,
it does not generalize well to items not seen, or rarely seen,
in the training data. This is where the learning to rank
component comes in. Instead of learning item-specific pa-
rameters in each preference group (defined over items), we
seek to learn a ranking function defined over features. There
are at least two advantages to this modeling. For one, we
would obtain better generalization from greater applicability
to unseen items with similar features. For another, we would
obtain better interpretability, as it may allow inspection of
which features are important to each preference group.

While it is possible to think of the two components iden-
tified above as a pipeline, and we will explore this as well in
the experiments, it is much more natural to consider them
as two inherent components of a unified joint model. For one
thing, the two components are mutually beneficial. Better
clustering leads to better ranking functions due to more ac-
curate reflection of preferences. Meanwhile, better ranking
functions lead to better clustering, allowing better alignment
of each ranked list to the closest preference group. Moreover,
in a joint model, there is no need for two sets of parameters,
one for clustering and another for learning to rank, and the
parameters can be unified.

Contributions In this work, we make the following con-
tributions.

• First, as far as we could ascertain, this is the first work
to unify mixture modeling for ranking and learning
to rank within a single framework, in the context of
heterogeneous population of rankings (see Section 3).

• Second, we propose a joint model: Plackett-Luce Re-
gression Mixture or PLRM model, described in Sec-
tion 4. It is a probabilistic graphical model that dis-
covers latent preference groups and their correspond-
ing ranking functions. Furthermore, in Section 5, we
describe its inference algorithm based on Expectation-
Maximization.

• Third, in Section 6, through comprehensive experi-
ments on several public datasets with varying hetero-
geneity, we show the effectiveness of the joint PLRM
model vis-á-vis a pipeline model, as well as learning to
rank models designed for homogeneous populations.

2. RELATED WORK
Here, we review related areas in the literature.
Probabilistic Models for Ranking This deals with

learning probability distributions over permutations (i.e.,
rankings). The observations are rankings over items. It
generally pays little, if any significant attention to features.

In this work, we build on the Plackett-Luce model, first
introduced by Plackett [36] and Luce [25] independently.
It expresses the probability of a permutation in terms of
element-specific parameters. [17] describes a Bayesian ap-
proach for inferring its parameters. Beyond a single ranking
model, subsequent works consider the notion of a mixture of
Plackett-Luce models. For instance, [7] describes a nonpara-
metric extension to model an infinite number of items, and
clustered rankings via Dirichlet process mixtures. Others
apply mixture models for profiling Irish electorates, includ-
ing [13, 14]. In turn, [15] explores a mixture of Benter’s
models, which are generalized forms of Plackett-Luce by in-
cluding dampening parameters. [43] addresses the question
of identifiability of Plackett-Luce mixture, and proposes an
efficient method to learn mixture of two Plackett-Luce mod-
els. These models are concerned with rankings alone, while
our focus is on modeling ranking functions based on features.

Aside from Plackett-Luce, there are other paradigms for
expressing distribution over rankings. Some are based on
the notion of distances [10]. For instance, Mallows model
[28] expresses the probability of a permutation in terms of
its distance to a reference permutation. [2, 21, 32] consider
a mixture of distance-based models. Yet another paradigm
is Bradley-Terry [4, 11], based on pairwise comparisons.

Learning to Rank Learning to rank [9] deals with
finding a function to rank elements based on their features.
There are three broad categories. Pointwise learns a score
for an element. Pairwise learns a binary classifier comparing
two elements. Examples of pairwise approaches are SVM-
Rank [19] and RankNet [5]. Listwise optimizes for a ranked
list of elements, exemplified by Coordinate Ascent [33] and
ListNet [6]. These learning to rank methods assume one cen-
tral ranking function, while we model multiple latent rank-
ing functions in the context of a heterogeneous population.

Rank Aggregation Rank aggregation [8] is concerned
with aggregating multiple rankings into one consensus rank-
ing. This comes up in applications such as meta-search
[39] that combines the results from multiple search engines,
or preference aggregation [40] that combines preferences of
users. This is a different problem to ours, as its aggregation
objective is different from our objective that seeks to resolve
the observed rankings into a number of preference groups.

Others Another related work [16] relies on clustering
instances in the feature space to obtain rankings. This is a
distinct problem that clusters instances by similarity in fea-
tures, rather than similarity in ranking functions. [1] pro-
poses a regression model based on Plackett-Luce model, but
their formulation aims to deal with categorical data. Their
formulation is not intended to be used for ranking data, and
is significantly different from our Plackett-Luce regression.

Collaborative filtering deals with deriving representations
for users and items to estimate ratings [20]. Instead of rat-
ings, some techniques are based on rankings [37, 41, 23].
Just as learning to rank has conventionally been recognized
as a different problem from collaborative filtering, our work
is also distinct in that we learn ranking functions based on
features, rather than relying on user-specific parameters.



3. FORMULATION
We consider a set of M items of the same type. For in-

stance, in the context of consumer choice, these may be
products of a given category, e.g., digital cameras. For mul-
timedia retrieval, these may be images to be ranked.

An item i is associated with a feature vector xi in the
D-dimensional space, xi ∈ RD. For instance, cameras may
have features such as sensor size, the presence of flash, weight
and physical dimensions, etc. For images, the features may
be gist descriptors and color histograms [35]. The collection

of feature vectors of various entities is denoted X = {xi}Mi=1.
For ease of reference, we list our notations in Table 1.

In addition to X, we are also given N ranked lists R =
{r(n)}Nn=1, corresponding to N “judges”. A judge n may
rank a subset of items denoted X̄n ⊆ X. The correspond-
ing ranking induced on X̄n in the form of a permutation,
without ties, is denoted r(n). When item i (with feature
vector xi) is placed in position j among items in X̄n, we

have r
(n)
i = j. Position j = 1 is the highest, followed by

position 2, etc. Equivalently, we write r(n)[j] = i.
We further assume that these judges can be clustered into

K preference groups. Each group is relatively homogeneous,
whereby the ranking behaviors of judges within a group do
not vary too much. In contrast, ranking behaviors across
groups are heterogeneous. Two individual judges from dif-

ferent groups are likely to have different rankings r(n) 6= r(n′)

over the same set of items X̄n = X̄n′ . These preference
groups are latent, and need to be discovered from the data.

Problem Statement Our problem can thus be stated
as follows. Given the feature vectors X and the ranked lists
R, as well as an integer K, we seek to identify:

• K latent preference groups among the N judges in R,

• a ranking function within each latent preference group.

4. MODEL
In this section, we discuss the formal definition of the

proposed Plackett-Luce Regression Mixture (PLRM) model.
The plate representation of PLRM is shown in Figure 1.

Overview PLRM is a probabilistic graphical model for
representing different latent preference groups within a pop-
ulation of judges. Each judge arranges a given set of items
into a ranked list (a permutation) based on the features of
the item. In the conventional Plackett-Luce model, the rank-
ing is based on item-specific parameters, which may connote
for item quality. In contrast PLRM assumes that the rank-
ing is based on a ranking function on item features.

We further assume that K groups exist within the popu-
lation, and each group is associated with a ranking function.
Each judge’s ranking is based on the ranking function of the
group it belongs to, while still allowing for some variance
among group members. Accounting for this variance is best
done through probabilistic modeling.

To generate the observed ranked lists R, we consider N
experiments as follows. At each random trial, we ask a new
judge to select a group. The group is chosen stochastically
with a categorical variable zn ∈ {1, 2, ...,K} indicating the
choice. We then ask the judge to rank a subset of items,
defined by their feature vectors X̄n. The judge relies on the
group’s ranking parameter wzn ∈ Rd. This parameter is a
vector in D-dimensional space, so that each component of
wzn corresponds to a particular feature of xi ∈ X̄n.

Table 1: Notations

Notation Description
i index of an item
M total number of items
d index of a feature
D number of item features
xi feature vector of an item i
X collection of items/feature vectors
n index of a judge or a ranked list
N total number of judges
X̄n subset of items ranked by judge n

r(n) permutation over X̄n given by judge n
ri position of item i in the ranked list r
r[j] index of the item occupying position j in r
R collection of ranked lists by N judges
K number of preference groups
k index of a preference group
wk preference vector for group k
W collection of preference vectors
vi ranking parameter for item i, equivalent to

exp
(
xiw

T
)

for PLRM
V collection of ranking parameters
π mixture proportion among preference groups
zn group assignment for judge n
Z collection of group assignments

To produce the ranking r(n) over items in X̄n, the judge
may apply the group parameter wzk via regression over the
items in X̄n, i.e., Y = X̄nwzn

T . Relying on exact regression
values may be unrealistic, given the likely variance among
group members. Therefore, to account for the trial uncer-
tainties and ranking deviation among the group members,
the regression values serve as conditional parameters to a
ranking probability model, as described in the following.

Ranking Probability Model We first describe a rank-
ing model based on the basic Plackett-Luce, after which we
introduce the regression-based Plackett-Luce in PLRM.

Let r be a ranking of M items, i.e., permutation of M in-
dices. Plackett-Luce (PL) model defines a probability distri-
bution over all possible rankings of M items. It is expressed
in terms of item-specific parameters V = {vi}Mi=1; vi ≥ 0.

PL(r|V ) =
M∏
j=1

pj(r|V ), (1)

where

pj(r|V ) =
vr[j]

vr[j] + vr[j+1] + · · ·+ vr[M ]

=
vr[j]∑M
l=j vr[l]

. (2)

The probability distribution yields an intuitive interpreta-
tion in the form of a ranking procedure. A judge generates
a ranked list from the first position to the last position.
p1(r|V ) indicates the probability of placing an item r[1] = i,
parameterized by vi, in the first place. Having selected the
item to occupy the first position, we repeat this procedure
with the subsequent positions. p2(r|V ) is the probability of
placing another element r[2] = i′, parameterized by vi′ in
the second place, and so on. This procedure continues for
all the items within a ranked list r. The joint probability of
this process for a ranked list r is presented in Eq. 1.



The PL model defined above has a couple of important
properties. The first one is the intuitive property that an
item i is more likely to be placed higher than another item
i′, if vi > vi′ . The second property flows from the afore-
mentioned Luce’s Choice Axiom. Items that have already
been placed into r would not influence the choice probability
of the remaining items. This property, also known as “in-
dependence from irrelevant alternatives” [26], allows ranked
lists of varying sizes to be induced for subsets of items.

One limitation of the conventional PL model, in the con-
text of learning to rank, is the reliance on the item-specific
parameter vi. This requires all items not just to have been
seen, but also to have had sufficient representation in the
training data. To address this limitation, we therefore seek
to bring the ranking parameter into the feature space of
items. This is accomplished by expressing the parameter vi
in terms of a regression of the feature vector xi with weight
parameter or“preference vector”w, as expressed in Eq. 3. In
this work, we use the exponential transformation to satisfy
non-negativity constraint. In practice, there could be other
possible choices such as sigmoid.

vi = exp
(
xiw

T
)

(3)

We call this approach Plackett-Luce Regression or PLR.
However, because of the heterogeneity of the population,
there may not be only a single preference vector w for all
ranked lists. Instead, we postulate that there are K sub-
populations, or preference groups, each of which is associ-
ated with its own preference vector. This gives rise to a
mixture of PLR models, which we term the Plackett-Luce
Regression Mixture or PLRM, as described in the following.

Generative Process The PLRM model can effectively
be described by the following generative process.

1. π, a K-dimensional mixture proportion, is sampled
from Dirichlet distribution with symmetric prior α:

π ∼ Dirichlet(α)

2. For each of the K preference groups, its preference
vector wk is sampled from a D-dimensional Gaussian
with zero mean and σ2 variance:

wk ∼ N (0, σ2)

3. For each ranked list r(n) defined over the subset of
items X̄n ⊂ X, where n = 1, . . . , N :

(a) Select a preference group zn from a choice of K
groups according to the mixture proportion π:

zn ∼ Categorical(π)

(b) Sample a ranking r(n) from the Plackett-Luce model
parameterized by the regressed values over the set
of feature vectors in X̄n:

r(n) ∼ PL
(

exp
(
X̄nwzk

T
))

The likelihood of this generative process is as follows:

L(R,Z,W, π|X) = P(π|α)×
K∏
k=1

P(wk|0, σ2)×

N∏
n=1

P(zn|π)PL
(
r(n)| exp

(
X̄nwzn

T
))

, (4)

x M r z N

w
K

π

σ2 α

Figure 1: Plackett-Luce Regression Mixture Model
in Plate Notation

where R = {r(n)}Nn=1 are the set of ranked lists, Z = {zi}Nn=1

are the corresponding group assignments for each ranked
list, and W = {wk}Kk=1 are the groups’ preference vectors.

Discussion The above generative process defines the
probabilistic generative model that we call PLRM, with a
mixture modeling component representing the latent prefer-
ence groups as well as a regression component representing
the learning to rank based on features. This represents the
joint modeling approach. With appropriate settings, we can
decouple the two components, yielding simpler models.

First, we can turn the model into a purely clustering model
based on rankings, without features. In this case, an item i
is represented by a feature vector xi, whose dimensionality is
the same as the number of items M . Rather than represent-
ing features, xi becomes a one-hot “identity” vector, with a
value of 1 in the i-th dimension, and 0 in all other dimen-
sions. Effectively, the regression xiw

T yields an item-specific
ranking parameter, just as in the original PL model. Given
that this results in a mixture of K Plackett-Luce models,
we call this Plackett-Luce Mixture or PLM, which is capa-
ble of clustering but not ranking by features. Later, we will
compare PLRM to PLM, to verify that regression on the
features does help the clustering function.

Second, we can turn the model into a purely learning to
rank model, by simply setting K = 1. In this case, there
is no mixture. There is only a single regression model, em-
bedded within a probabilistic ranking model. We thus call
this Plackett-Luce Regression or PLR, which is capable of
learning to rank, but not clustering. Later, we will compare
PLRM to PLR, to verify that modeling a mixture does help
for a heterogeneous ranking population.

Third, the above two simpler models essentially decou-
ple the two components that are joined together by PLRM.
Therefore, they could be employed in a disjoint pipeline.
This pipeline of PLM+PLR would first cluster the ranked
lists in the population R into K preference groups using
PLM, without the help of features. Thereafter, we run
PLR within each preference group to learn a ranking func-
tion based on features. Later, we will compare PLRM to
PLM+PLR to see how the joint approach compares in the
effectiveness of both the clustering and ranking objectives.



5. INFERENCE
In this section, we derive an Expectation-Maximization

(EM) algorithm for fitting the Plackett-Luce Regression Mix-
ture (PLRM) model parameters, as well as discuss how the
model could be used for ranking prediction.

5.1 Optimization
EM is an iterative algorithm that is commonly used for

finding maximum likelihood estimate of a model involving
unobserved parameters. In the case of PLRM, we consider
the group assignments Z = {zn}Nn=1 as latent variables that
guide the estimation procedure. The groups’ preference vec-
tors W = {wk}Kk=1, as well as the mixture proportion π, are
unknown parameters to be maximized during the maximiza-
tion step. The initial estimates are chosen randomly.

Expectation Step In the expectation step, we estimate
the latent variables (Z), and calculate the expected value
of the log likelihood function with respect to their a poste-
riori distribution. We denote the expected value of the log
likelihood as follows:

Q(W,π|W ′, π′) = EZ|R,W ′,π′,X [logL(R,Z,W, π|X)] , (5)

where W ′ and π′ are the current parameter estimates.
Let Tnk be an auxiliary function defined as follows:

Tnk =
P(zn = k|π′)PL

(
r(n)| exp

(
X̄nw

′
k
T
))

∑K
l=1 P(zn = l|π′)PL

(
r(n)| exp

(
X̄nw′l

T
)) . (6)

Then, we can rewrite Eq. 5 into Eq. 7 below:

Q(W,π|W ′, π′) = log P(π|α) +

K∑
k=1

log P(wk|0, σ2)+

N∑
n=1

K∑
k=1

Tnk
(

log P(zn = k|π) + log P
(
r(n)| exp

(
X̄nwk

T
)))

(7)

Maximization Step Eq. 7 is used to maximize the
model parameters π and W .

Updating π: An update step can be written for π:

πk =
1

λ

(
N∑
n=1

Tnk + α− 1

)
, (8)

where λ =

N∑
n=1

(
K∑
k=1

Tnk + α− 1

)
(9)

To make sure that every πk is positive, we accept only
α > 1, so that α− 1 = β > 0 serves as a smoothing pseudo-
count for each group.

Updating W : The update for groups’ preference vec-
tors wk can be done via iterative optimization, using, for
example, BFGS (Broyden-Fletcher-Goldfarb-Shanno) algo-
rithm [22]. The function to be optimized for every k ∈
{1, 2, ...,K}, w ≡ wk is:

F (w) = −ww
T

2σ2
+

N∑
n=1

K∑
k=1

Tnk log PL
(
r(n)| exp

(
X̄nw

T
))
(10)

The derivative for the d-th element w[d] of the vector w

can be computed as follows:

dF (w)

dw[d]
= −w[d]

σ2
+

N∑
n=1

K∑
k=1

Tnk

|X̄n|∑
i=1

(
xi[d]−

∑|X̄n|
l=i xl[d]exlw

T∑|X̄n|
l=i exlwT

)
(11)

5.2 Prediction
Once the model parameters are learned, we can use the

model for predictions. Here, we discuss two prediction tasks.
Group Assignment For the first prediction task, given

a ranked list, predict the latent preference group that this
ranked list belongs to. This task allows us to align a new
ranked list to one of the learnt preference groups. To address
this task, we pick the z ∈ {1, 2, ...,K} that maximizes the a
posteriori distribution of this assignment. Let X̄ be an items
set, and r its ranking. Given the trained model parameters,
we want to maximize the following probability:

P(z|r, π,W, X̄) ∝ P(z, r, π,W, X̄)

= P(π|α)

K∏
k=1

P(wk|0, σ2)×

P(z|π)PL
(
r| exp

(
X̄wz

T
))

∝ P(z|π)PL
(
r| exp

(
X̄wz

T
))

(12)

Ranking Prediction For the second prediction task,
given a set of items, where a ranking for some subset of the
items is known, predict the ranks of the other items. This
allows us to extend the rankings to other items beyond the
known ranking. To address this task, we first predict the
group assignment to which the set of items belongs, based
on the known subset ranking (as in the first task). Once the

group assignment z∗ is identified, the remaining items of X̃
whose rankings are not yet known are arranged into a ranked
list, using the group’s Plackett-Luce Regression parameter,
i.e., Y = X̃wz∗

T . Taking into account the Plackett-Luce
model properties, greater values yield higher rank positions.

6. EXPERIMENTS
The objectives of the following experiments are two-fold.

First, as PLRM both discovers the latent preference groups,
as well as learns a ranking function for each group, we would
like to investigate the relationship between these two objec-
tives, particularly comparing the joint modeling approach
vs. the disjoint pipeline approach. Second, since PLRM is
designed for a heterogeneous ranking population, we would
like to verify its applicability, particularly when compared to
a baseline that assumes a homogeneous ranking population.

6.1 Datasets
We describe four datasets used in the experiments. The

first two: PubFig and OSR will be our main datasets that
appear in all experiments, because they have known cluster
labels, which are necessary as ground truth for validating the
accuracy of identifying the preference groups. In addition,
we include another two datasets: Comp and DCam, with
rankings but without known cluster labels, which we would
use only in the second half of the experiments to evaluate
ranking accuracies for heterogeneous populations.



Public Figures (PubFig). This dataset1, described
by [35], consists of 772 facial images (items) of 8 public fig-
ures (∼ 100 images per person). The 8 public figures are
ranked with respect to 11 physical attributes (e.g., masculine-
looking, pointy nose, big lips), as listed in Table 2. Each
public figure is identified by a letter2. Expression A ≺ B
means that item A precedes item B in the permutation.
Some items share the same rank position. The third column
shows the permutation lengths possible for each attribute.

These 11 attributes are considered the ground truth pref-
erence groups, because each induces a different ranking over
the 8 identities. For experiments, we construct 300 ranked
lists for each attribute, for a total of 3300 ranked lists. Each
list is constructed by sampling an image for each identity.
The feature vector of each image is a concatenation of 512-
dimensional gist descriptor and a 45-dimensional Lab color
histogram. The resulting collection of ranked lists and their
feature vectors (but without the ground truth labels) are
pooled together. For learning, we create ten random splits,
such that 90% of the ranked lists for each attribute are used
for training vs. 10% for testing, and average the accuracies.

Outdoor Scene Recognition (OSR) This dataset1,
described by [35], contains 2688 scenes with different spatial
envelopes from 8 categories3. A scene (item) is represented
by its 512-dimensional gist descriptor (feature vector). The
categories are organized into rankings with respect to 6 at-
tributes (e.g., natural, open, perspective), as shown in Ta-
ble 2. These attributes are considered the ground truth pref-
erence groups. As in PubFig, we construct 300 ranked lists
for each attribute (for a total of 1800 ranked lists), and cre-
ate ten random splits of 90:10 for training:testing.

Computer Survey (Comp) This marketing-related
dataset4 is in the form of surveys [42]. The subjects were
asked to rate 20 personal computers (items) based on their
likelihood of purchasing each computer (on a scale from 0 to
10). A computer is described by its feature vector, which in-
dicates intrinsic characteristics of the computer (e.g., amount
of RAM, CPU speed) as well as extrinsic features (e.g., hot-
line service availability, warranty), resulting in a total of
13 binary features. We excluded subjects with missing re-
sponses and with fewer than 5 distinct likelihood values;
these were 33 out of 201 subjects. Therefore, 168 subjects
were used in experiments. We induce a ranked list of com-
puters for each subject based on the likelihood ratings.

Digital Cameras (DCam) The last dataset concerns
digital cameras (items). We collected the specifications of
876 digital cameras from www.dpreview.com and formed fea-
ture vectors according to their specifications. These include
weight, number of pixels, sensor size, body type, resulting in
a total of 32 features. These cameras were manually linked
to Amazon product pages (www.amazon.com). We used the
public Amazon dataset5 described in [31, 30]. Ranked lists

1https://filebox.ece.vt.edu/˜parikh/relative.html
2The 8 identities in PubFig are: Alex Rodriguez (A), Clive
Owen (C), Hugh Laurie (H), Jared Leto (J), Miley Cyrus
(M), Scarlett Johansson (S), Viggo Mortensen (V) and Zac
Efron (Z).
3The 8 categories in OSR are: coast (C), forest (F), highway
(H), inside-city (I), mountain (M), open-country (O), street
(S) and tall-building (T).
4https://github.com/probml/pmtkdata/tree/master/
conjointAnalysisComputerBuyers
5http://jmcauley.ucsd.edu/data/amazon/

Table 2: Permutations on Attributes [35] (Ground
Truth Rankings)

Attribute Permutation Length

PubFig
Masculine-looking S≺M≺Z≺V≺J≺A≺H≺C 8
White A≺C≺H≺Z≺J≺S≺M≺V 8
Young V≺H≺C≺J≺A≺S≺Z≺M 8
Smiling J≺V≺H≺{A,C}≺{S,Z}≺M 6
Chubby V≺J≺H≺C≺Z≺M≺S≺A 8
Visible Forehead J≺Z≺M≺S≺{A,C,H,V} 5
Bushy Eyebrows M≺S≺Z≺V≺H≺A≺C≺J 8
Narrow Eyes M≺J≺S≺A≺H≺C≺V≺Z 8
Pointy Nose A≺C≺{J,M,V}≺S≺Z≺H 6
Big Lips H≺J≺V≺Z≺C≺M≺A≺S 8
Round Face H≺V≺J≺C≺Z≺A≺S≺M 8

OSR
Natural T≺{I,S}≺H≺{C,O,M,F} 4
Open {T,F}≺{I,S}≺M≺{H,C,O} 4
Perspective O≺C≺{M,F}≺H≺I≺S≺T 7
Large Objects F≺{O,M}≺{I,S}≺{H,C}≺T 5
Diagonal Plane F≺{O,M}≺C≺{I,S}≺H≺T 6
Close Depth C≺M≺O≺{T,I,S,H,F} 4

among the cameras were induced from ratings given by Ama-
zon reviewers (on a scale from 1 to 5). We retain only review-
ers with at least 3 distinct rating values within the linked
data, resulting in 880 ranked lists.

6.2 Evaluation Tasks and Metrics
In the experiments, we evaluate the methods based on two

prediction tasks that we have outlined earlier in Section 5.2.
Group Assignment The first task is to assign a ranked

list to the correct preference group. This can only be evalu-
ated on PubFig and OSR, with known preference groups.

To measure the group assignment accuracy, we compare
the preference groups arrived at by a model to the ground
truth. For evaluation metric, we use the Rand Index (RI),
a widely used statistical measure for data clustering. This
metric is defined on the space of object pairs. We want to
assign two objects (ranked lists) to the same latent prefer-
ence group, if and only if they belong to the same ground
truth grouping. Otherwise, we want to assign them to two
different latent preference groups. The former is known as
true positive (TP ), while the latter is known as true nega-
tive (TN). For N objects, the total number of object pairs
is N(N − 1)/2. Therefore, the Rand Index is defined as
follows:

RI =
2(TP + TN)

N(N − 1)
(13)

Rand Index or RI ranges from 0 (worst) to 1 (best). We
will express them as percentages.

Ranking The second evaluation task is to predict the
ranking of items based on their features. To measure the
ranking accuracy, we employ Kendall’s Tau correlation co-
efficient. It measures how similar two ranked lists are in
terms of the difference between two probabilities, namely:
the probability that the observed ranked lists are in the same
order versus the probability that they are not.

Given two ranked lists A = (ai)
M
i=1 and B = (bi)

M
i=1 in the

form of permutations, we say that for i 6= j, a pair (ai, bi) is
concordant with another pair (aj , bj) if either both ai � aj



and bi � bj , or both ai ≺ aj and bi ≺ bj . Otherwise we say
that the pairs are discordant. Kendall’s Tau is defined as
follows:

τ =
# concordant pairs−# discordant pairs

1
2
M(M − 1)

. (14)

τ can take the values between minus one and plus one. For
evaluation purposes, we re-normalize the coefficient so that
it yields a value from zero to one, as follows:

τ∗ =
τ + 1

2
=

# concordant pairs
1
2
M(M − 1)

. (15)

We use Kendall’s Tau to compare the ranking produced by
a method with the ground truth. Thus, higher Kendall’s Tau
is better. We will express the value in terms of percentages,
averaging across the ranked lists in the testing set.

Where perfect rankings are known, Kendall’s Tau better
reflects how close an output ranking is to the perfect ranking
[9]. In our datasets, all rank positions are important, and
not just the top positions. For instance, in PubFig when
ranking facial images based on a certain physical attribute,
we wish to get the ranking right across the full length of
the list. For that reason, Kendall’s Tau is more appropriate
than those favoring the top-ranked elements such as DCG.

6.3 Compare to Pipeline Approach
Here, we seek to evaluate the efficacy of the PLRM model,

which joins together the tasks of discovering the preference
groups as well as learning a ranking function for each group.
As we look into validating both preference groups and rank-
ing, we can use only PubFig and OSR in these experiments.

Group Assignment We first explore how well PLRM
can recover the ground truth clustering structure within the
data (i.e., the attributes in PubFig and OSR). The most ap-
propriate baseline is Plackett-Luce Mixture or PLM, which
is a mixture model based on Plackett-Luce that does not
use the feature space representation to generalize elements
beyond their identity (see Section 4). That way, we can see
how PLRM’s modeling of regression-based parameters based
on features helps in the clustering objective. The number of
latent preference groups K in both PLRM and PLM is set to
the actual number of attributes in the respective datasets.

The clustering results for PLRM and PLM are shown in
Table 3. Since the effect of heterogeneous rankings can most
clearly be studied when the attributes are really diverse and
distinct, we start with an experiment involving three such
attributes. For PubFig, we use {Masculine-looking, Pointy
Nose, Round Face}. For OSR, we use {Natural, Large Ob-
jects, Close Depth}. In each case, the three attributes are
diverse, with the lowest cumulative Kendall’s Tau-b statis-
tics (adjusted for ties), indicating stronger disagreement in
terms of the permutation among the three attributes.

Furthermore, for greater insight into results, we consider
three different ways of sampling for generating ranked lists.

• In the Random experiment, we sample items of each
identity at random for each considered attribute. For
PubFig, both PLRM and PLM do well, achieving close
to 99.8% in terms of Rand Index. In this case, the
number of samples is enough to learn an appropri-
ate ranking value for each element in the dataset with
respect to the attributes (each person in PubFig has
only about 100 images). However, for OSR, PLRM
with 95.1% outperforms PLM with 56.1% significantly.

Because it relies on identities, but not features, PLM
performs worse in the case where there is insufficient
ranking information for specific items, such as in OSR.

• In the Exclusive experiment, we consider three non-
overlapping partitions of items, one for each attribute,
from which the ranked lists are generated. In this
scenario, PLRM could still learn through the feature
space, getting 100% for PubFig and 98.7% for OSR. In
contrast, PLM cannot learn how the same items may
be ranked differently, and thus gets lower Rand Indices
of 51.1% for PubFig and 60.5% for OSR. This shows
the limitation of PLM when an item has not been seen
across all the preference groups, which is overcome by
PLRM that does not need to see the exact item if other
items with similar features have been seen.

• In the All-for-One experiment, we first select a subset
of items to rank, and then generate the ranked lists
for all attributes. Next, we select a different subset of
items to rank. Therefore, two ranked lists from the
same attribute do not share items. Although we al-
ways see all rankings from all attributes, there is not
enough information to connect different ranked lists
of the same attribute. This showcases the weakness
of PLM that requires to have seen cooccurrences of
items, whereas PLRM that works through the feature
space can still solve it, attaining 99% accuracies for
both datasets, as compared to PLM’s 55.7%.

Finally, we consider all the attributes (11 for PubFig and
6 for OSR), and show the results under the All columns.
Overall, PLRM does a better job in clustering than PLM.
For PubFig, PLRM’s 89.4% on PubFig and 83.4% on OSR
are better than PLM’s results (bold indicates best results).
PLM is unable to generalize from item id, while PLRM seeks
ranked lists that are consistent with the ranking function.

Predicting Group Assignment with Subset Length
In the previous experiments, we have assumed that we have
ranked lists of sufficient length, and seek to identify the
group. In some predictive scenarios, we may have a new
ranked list with very few rankings for which we would like
to know what its ranking function would be, in order to
predict unseen rankings. We first need to identify its group
assignment, in order to identify its ranking function.

Figure 2 shows the clustering results when only a subset
of the ranked list (of a specified length) is used for group
assignment. This experiment is for All attributes with Ran-
dom sampling. The figure shows that for both PLRM and
PLM, the longer the subset length used, the more accurate
is the group assignment, which is reasonable because there
is more information to identify the group. In relative terms,
PLRM considerably outperforms the PLM, due to the for-
mer’s feature-based nature. PLM may not result in reason-
able predictions for unseen items, in which case the most
probable cluster according to π is chosen.

Ranking Prediction It is possible to predict unseen
ranking of items if the preference group of a judge (ranked
list) is known (see Section 5.2). Given a set of items, we
consider the scenario when a judge is first asked to rank
some subset of these items. After the initial ranking, we then
predict the preference group for the judge, and determine the
ranking for the rest of the items on the judge’s behalf.

The previously identified baseline PLM can only perform
clustering, but not ranking prediction of unseen items be-



Table 3: Group Assignment Results (Rand Index)

Method
PubFig OSR

{Masculine, Pointy Nose, Round Face} All {Natural, Large Objects, Close Depth} All
Random Exclusive All-for-One Random Random Exclusive All-for-One Random

PLRM 99.8 100. 99.2 89.4 95.1 98.7 99.6 83.4
PLM 99.8 51.1 55.7 76.3 56.1 60.5 55.7 57.9
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Figure 2: Predicting Group Assignments Based on Subset Length

cause it does not consider features. To investigate the ef-
fects of both clustering and ranking, we consider a pipeline
baseline, involving first clustering using PLM followed by
learning-to-rank using PLR for each cluster (see Section 4).

Table 4 shows the results of ranking prediction when the
different sampling strategies are applied, corresponding to
the clustering experiments in Table 3. We reserve a sub-
set length of 3 and 2 for PubFig and OSR respectively for
first predicting the group assignment, which still leaves suf-
ficient remaining rankings to be predicted for all attributes.
Thereafter, we use the assigned group’s ranking function.

In general, the ranking prediction results are consistent
with the clustering results. Most of the time, when PLRM
has better clustering performance, it also has better rank-
ing performance. This is most notable for OSR, whereby
PLRM consistently has better ranking performance than
PLM+PLR across different sampling strategies. For Pub-
Fig, that is mostly true, with a couple of reasonable ex-
ceptions. For the three distinct attributes, in the Random
experiment, PLRM and PLM have very similar clustering
performances for reasons cited above. Therefore it is rea-
sonable that PLRM and PLM+PLR also have very similar
ranking performances (italics indicates that the difference is
not statistically significant). For All attributes, PLRM has
slightly lower ranking performance. This may be due to the
fact that not all the 11 attributes in PubFig are distinct.
As we will see shortly, the intrinsic number of preference
groups is around 3 in PubFig, implying that some of the 11
attributes may be correlated. For OSR, PLRM is better.

6.4 Compare to Non-Heterogeneous Approach
We now look into the utility of PLRM in ranking scenar-

ios, particularly comparing to methods that do not assume
a heterogeneous ranking population and thus rely on a cen-

tral ranking function. In addition to PubFig and OSR, in
these experiments we use two additional datasets containing
user opinion responses: Computer Survey (Comp) and Dig-
ital Cameras (DCam). Since we know the users who rate
the products in DCam, we assign each user to a particular
preference group. These datasets were not studied in the
previous section because they lacked ground truth for clus-
tering. However, they still allow for validation of rankings.

Number of Clusters For this comparison, we first need
to determine the number of preference groups for PLRM. It
is not advisable to rely on the known number of attributes.
For one reason, the intrinsic number of preference groups
may be different than the number of attributes. For another
reason, some datasets such as Comp and DCam do not have
known preference groups. Therefore, we first determine the
intrinsic number of preference groups by varying K for each
dataset, and measure the ranking prediction using the as-
signed group’s ranking function. For each dataset, we try to
accommodate as long a subset length for group assignment
as possible, while still allowing sufficient remaining items to
rank. The subset lengths are 3 for PubFig, 2 for OSR, 3 for
Comp, and 3 to 5 for DCam (varying because users have
rated different numbers of items).

Figure 3 shows ranking prediction quality plotted against
the number of clusters for each dataset. It shows that the
greatest gains come from increasing the number of clusters
from 1 to 2, thereafter the performance increases slower or
converges. The numbers of clusters or preference groups
maximizing the ranking performance are 3 for PubFig, 2
for OSR, and 5 for DCam. For Comp, there is not much
difference among different numbers of clusters, but 2 clusters
are slightly better than 1; this may be an indicator that there
is less heterogeneity overall for Comp. Subsequently, we will
use these numbers to compare to the baseline.



Table 4: Ranking Results (Normalized Kendall’s Tau)

Method
PubFig OSR

{Masculine, Pointy Nose, Round Face} All {Natural, Large Objects, Close Depth} All
Random Exclusive All-for-One Random Random Exclusive All-for-One Random

PLRM 89.8 91.6 89.7 85.1 71.7 74.7 89.5 76.9
PLM+PLR 91.3 89.2 80.6 86.6 63.4 66.9 86.3 66.5
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Figure 3: Ranking Prediction: PLRM with varying
number of clusters K

Ranking Prediction As our focus is on validating the
applicability to heterogeneous ranking population, the most
appropriate baseline to PLRM in this respect is PLR (see
Section 4), which is based on the same underlying Plackett-
Luce regression modeling, but does not model a mixture.

Table 5 compares PLRM with the specified numbers of
clusters to PLR, which effectively only has one cluster. The
results show that PLRM outperforms PLR on all datasets.
This outperformance is quite considerable and statistically
significant for PubFig, OSR, and DCam. This outperfor-
mance helps to support the case that when the population
has a high level of heterogeneity, a method that considers
multiple latent preference groups such as PLRM have the
potential to do significantly better. For a dataset that does
not have a high level of heterogeneity in the first place, such
as Comp, the improvement is rather modest.

Though PLR is a simplified version of PLRM without mix-
ture modeling, we point out that PLR is not a weak baseline,
and is actually a competitive learning to rank method in its
own right. Table 6 benchmarks PLR to popular learning to
rank methods, such as Coordinate Ascent [33], SVM-Rank
[19], RankNet [5], ListNet [6], and RankBoost [12]. We use
their implementations in RankLib6 and SVMrank7. Because
these methods are based on very different algorithms, these
are provided as a point of reference, rather than as a direct
comparison. Nevertheless, Table 6 shows that PLR gets
good results on the datasets. In many cases, PLR is compa-
rable or even better. This underlines the relative strength of
PLR, which in turn lends greater support to PLRM’s out-
performance.

6https://sourceforge.net/p/lemur/wiki/RankLib/
7https://www.cs.cornell.edu/people/tj/svm light/

Table 5: Ranking Prediction: PLRM vs. PLR

Method PubFig OSR Comp DCam

PLRM 85.6 77.0 87.3 85.4
PLR 81.1 66.5 86.2 76.2

Table 6: Comparison of Learning to Rank Methods

Method PubFig OSR Comp DCam
PLR 81.1 66.5 86.2 76.2
Coordinate Ascent 75.0 58.0 81.9 75.6
SVM-Rank 78.4 67.0 86.6 71.0
RankNet 76.2 63.7 79.6 67.2
ListNet 76.6 64.4 86.8 67.9
RankBoost 78.6 61.7 83.6 58.6

Brief Comment on Running Time Our focus in this
work is on effectiveness and accuracy, and not on computa-
tional efficiency. The training times are reasonable. For in-
stance, among the learning to rank methods, PLR’s training
takes less than a minute. This is comparable to SVM-Rank,
and faster than other learning to rank methods. In turn, the
training of PLRM requires optimization of latent variables
with EM algorithm. Hence, it takes more time, which in-
creases with the required number of clusters. For instance,
it takes under 30 iterations till convergence on PubFig, with
each iteration taking a minute on average. These time mea-
surements were conducted on a PC with Intel Core i5 CPU
3.3 GHz and 12GB of RAM running Windows OS.

Case Study To gain a sense of the nature of the clusters
that PLRM learns, we show the top five features for each of
the five clusters or preference groups learnt from DCam:

1. Pentaprism VF (viewfinder), mid-size, CMOS sensor,
CCD sensor, mirrorless-style;

2. Pentaprism VF, mid-size, screen size, CMOS sensor,
BSI-CMOS sensor, pentamirror VF;

3. Pentaprism VF, mid-size, Foveon X3 sensor, pentamir-
ror VF, rangefinder-style;

4. Tunnel VF, compact, mirrorless, pentaprism VF, Foveon
X3 sensor;

5. Max ISO, electronic VF, pentamirror VF, BSI-CMOS
sensor, compact.

The first three groups favor mid-size cameras with pen-
taprism viewfinders having CMOS-like sensors. The last
two preference groups give more credit to compact cameras
than to mid-size cameras. The last preference group also fa-
vors cameras that can work in low-light conditions. The top
features Max ISO (indicating maximal light sensitivity) and
BSI-CMOS Sensor (a specific type of sensor that increases
amount of light can be captured) support this observation.



7. CONCLUSION
We consider the problem of modeling ranking functions

in a heterogeneous population. In such a population, there
may be several latent preference groups. Each group shares
a ranking function, yet across groups there are significant
differences in their ranking functions. Our proposed model,
Plackett-Luce Regression Mixture or PLRM, is a probabilis-
tic graphical model that models a mixture of K latent rank-
ing functions. Experiments show that there is value in mod-
eling discovery of latent preference groups and ranking func-
tions within a unified model, particularly when there is con-
siderable heterogeneity in the data, as shown by the compar-
ison of PLRM and the baselines: clustering-only PLM and
the pipeline PLM+PLR. Moreover, PLRM also outperforms
ranking-only PLR, giving credence to modeling multiple la-
tent preference groups for heterogeneous rankings.
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