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COMPARISON MINING FROM TEXT

Maksim Tkachenko

ABSTRACT

Online product reviews are important factors of consumers’ purchase decisions.

They invade more and more spheres of our life, we have reviews on books, elec-

tronics, groceries, entertainments, restaurants, travel experiences, etc. More than 90

percent of consumers read online reviews before they purchase products as reported

by various consumers surveys. This observation suggests that product review in-

formation enhances consumer experience and helps them to make better-informed

purchase decisions. There is an enormous amount of online reviews posted on e-

commerce platforms, such as Amazon, Apple, Yelp, TripAdvisor. They vary in

information and may be written with different experiences and preferences.

If online opinions are indeed important in many spheres of our lives, then their

systematic analysis is a real-life problem. Due to an enormous amount of opinions

scattered across the Web, a handcrafted analysis seems to carry an inadmissible cost

of time and efforts. An alternative to consider is an automated or, more appropri-

ately, semi-automated analysis conducted by computers as an assistance to human

analysts. Text processing applications have received much attention in the past three

decades and have been shown successful for language understanding.

Comparison mining aims at understanding opinion mining problems when mul-

tiple entities are present simultaneously. This includes, but not limited to deriving

similarities and differences between entities and discovering information about the

entity relations. The entities may be products, individuals, issues, etc. The notion

of comparison tangles in in a form of joint evaluative statements, such as ‘I think A

is better than B’, ‘I think A is a good alternative to B’, and introduces new research



questions, similar and yet different from traditional opinion mining. How do we

find these statements in a review? How do we interpret these statements? How do

we make sense of thousands of such comparisons? In this study, we seek to answer

these questions and propose a set of related computational solutions.

First, we investigate a comparison identification problem and cast it as a rela-

tion extraction problem. Within the relation extraction setup, we develop a new

approach for identifying comparative relations. The formal investigation of the

syntactic structure of comparative statements leads us to a kernel-based approach,

which relies on the dependency structure of sentences. The proposed method shows

state-of-the-art results for the comparison identification problem.

Second, we explore intrinsic properties of a comparative corpus to derive a joint

model for comparison interpretation and aggregation. At the level of comparisons,

the model seeks to derive the comparison outcome of a statement, i.e., which entity

is preferred by the writer. At the aggregated level, it seeks to understand the overall

ranking of the entities in a corpus of comparisons. The proposed model is shown

to be superior to the approaches that tackle each level separately. An empirical

evaluation demonstrates its effectiveness on real-world datasets.

Third, we look at the phenomenon of comparison disagreement, i.e., different

users may have different preferences over the same set of entities. To capture this

diversity, we propose a model for preference clustering and demonstrate its effec-

tiveness and utility.

Fourth, we propose a method for explaining entity comparisons, when enti-

ties are identified by their textual representations. CompareLDA, a supervised

topic model, is employed to align topics, distributions of co-occurring words, with

comparisons, so that the topics are indicative of the “better” and “worse” entities.

Through an empirical evaluation, we show that the proposed model is more effective

for capturing comparisons than alternative supervised topic models.

All the proposed methods form substantial contribution within the comparison

mining research and facilitate a better understanding of the opinion language.
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CHAPTER 1

INTRODUCTION

1.1 Comparison Mining

Nowadays, whenever I want to buy a new electronic device like laptop, camera, or

MP3 player, I most definitely browse the Web in search of related product informa-

tion. Online reviews, a form of digital word-of-mouth, have become one of the most

common and important sources of such information for me and, I believe, for the

modern consumer. E-commerce platforms, turning into a type of social networks,

facilitate interaction between consumers, exchange of product-related information,

and help to make informed purchases.

Online reviewing increasingly affects more and more spheres of consumers’ life,

reviewing is available for books, electronics, music, entertainment, groceries (e.g.,

Amazon, iTunes Store) as well as for various services that provide restaurant, travel

or other kind of experiences (e.g., Yelp, TripAdvisor, Booking.com). Consumers’

experiences and opinions shared online draw a considerable attention from com-

panies, because the ability to quickly react and address consumers’ concerns and

requests is crucial for success in a competitive environment. Online platforms make

communication between consumers and businesses unmediated, which in turn can

be analysed and put into good service.

Public opinions on controversial matters have always been of interest in politics.

The rise of social media (e.g., Twitter, Facebook, Reddit) essentially has changed

1



CHAPTER 1. INTRODUCTION

the way political communication works. Online users are able to connect directly

to politicians and express their approval or disapproval by simply pressing “like

button” or posting a comment. These “likes” and comments can then be used to

approximate election results.

If online opinions are indeed important in many spheres of our lives and help

to make informed decisions, then their systematic analysis is a real-life problem.

Due to an enormous amount of opinions scattered across the Web, their handcrafted

analysis seems to carry an inadmissible cost of time and efforts. An alternative

to consider is an automated or, more appropriately, semi-automated analysis con-

ducted by computers as an assistance to human analysts.

Text processing applications have received much attention in the past three

decades and have been shown successful in a number of language understanding

tasks: semantic parsing [175], machine translation [189], information extraction

[23], etc. Among all of them, opinion mining [102], which deals with written opin-

ions, is the most relevant study to the topic of this work (see Chapter 2).

Comparison mining, a part of opinion mining, aims at understanding opinion

analysis problems, when multiple entities are present simultaneously. For example,

one may look for the difference between two entities in terms of their description

and relative appraisal. Written opinions tangle in in a form of evaluative statements

(‘I think A is better than B’ or ‘I think A is a good alternative to B’) and introduce

new research questions, similar and yet different from traditional opinion mining:

How do we interpret these statements? How do we make sense of thousands of

such comparisons? Could we pinpoint the difference between entities? Traditional

research on opinion mining focuses contrarily on separate entity evaluations like ‘I

think A is good’ or ‘I think build quality of B is excellent’. For comparison mining,

the notion of relations between entities becomes central.

In this study, we develop components of an end-to-end system, which aim to

answer some of the aforementioned questions in a fully computational manner.

First, we formally investigate the syntactic structure of comparative statements,

2
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Identifying

Comparisons in Text

Mining Comparative

Relations

Discovering

Preference Groups

Explaining Entity

Comparisons

Identifies text excerpts

containing entities in

comparative relations

(e.g., A is better than B).

Interprets comparative

relations assigning

preferences labels to the

excerpts (e.g., A > B).

Ranks the entities with

respect to the observed

comparisons.

Clusters disagreeing

rankings. Approximates

the corresponding

ranking functions.

Fits topic models aligned

with the entity rankings to

assist exploratory

analysis of comparisons.

Figure 1.1: Component-based Overview.

which leads to a kernel-based approach for extracting comparative sentences from

text (Chapter 3). Second, we explore intrinsic properties of a comparative corpus

to derive a joint generative model for comparison interpretation and aggregation

(Chapter 4). Third, we look at the phenomenon of comparison disagreement among

preferences and develop a clustering technique for discovering preference groups

within a population of users (Chapter 5). Fourth, with the aim to provide an intu-

itive interpretation of entity comparisons, we develop a supervised topic model for

entity comparisons (Chapter 6). Figure 1.1 illustrates the structure of this work in a

component-based manner, each box corresponds to a chapter.

Comparisons form about 10% of sentences in a typical review [86]. Thus, to

analyse comparison at the large scale, we first need to be able to locate them in a

text collection. A handcrafted approach does not scale, as it requires considerable

time and is labor-intensive. We turn to machine learning methods. The problem

of comparison identification, which was often cast as sentence classification (com-

parative sentence vs. non comparative sentence), turned out to be more interesting.

For example, a comparative sentence can have three entity mentions, but only two

comparisons. Sentence ‘A is better than B and C’ compares A and B, A and C, but

does not compare B and C. Therefore, comparison identification can be casted as a

relation extraction problem, where given an excerpt and a couple of entities within

it, a method is required to determine if a comparison between entities is present.

We analysed the syntactic structure of comparisons and developed a new kernel ap-

proach to measure sentence similarity. Comparisons impose heavy constraints on

the sentence structure, even if the words in a sentence vary a lot, their dependency

3



CHAPTER 1. INTRODUCTION

structure often remains the same. The novel dependency-based kernel helps us to

identify comparisons within a text collection with a higher performance and greater

granularity.

Having a corpus of comparisons, we want to interpret information it contains.

Each comparison can be interpreted individually, one can induce an entity ranking

between entity mentions based on the words a sentence contains. On the surface,

for a pair of entities, the problem is a binary classification problem, we want to

know whether the first or the second-mentioned entity of a comparison is preferred

[77]. Then all the individual comparison predictions can be combined to induce

preferences at the corpus level. Ranking aggregation models can be used for this

task [91]. We systematically explore these two levels of interpretation within a

joint probabilistic graphical model and show that combined interpretation allows to

achieving better interpretation performance at both.

If we pursue the line of the corpus interpretation, then we may find that different

users have different opinions of how their preferences should be distributed: one

may state ‘A is better than B’ and the other ‘A is worse than B’. Consumers look-

ing for a new laptop may value different features: a gamer would look for a high

performing laptop, a businessman would look for something more ergonomic and

light at the expense of the computing power. To make sound conclusions about how

people compare things, we need to consider different preference groups of users and

be able to differentiate one from another. Armed with this observation, we propose

a clustering method for deriving and describing such preference groups.

A comparison choice often needs to be accompanied with a rationale if we seek

to gain some insight about the decision. When a formal set of entity features is

observed (e.g., price, compactness), this task can be reduced to the interpretation of

regression parameters or other intuitive models. However, dealing with text usually

requires additional inference. We need to make sense of the word distributions.

Assuming that entity comparisons come from the same preference group (which

can be achieved by preference group clustering), we aim to find an explanation

4



CHAPTER 1. INTRODUCTION

for the comparisons through the topics. We propose a supervised topic model for

document comparisons, which is based on intuition that we can align topics to be

predictive of comparison decisions. Thus, reviewing the derived topics, one can

form a better understanding of the subjects and objects of the comparisons.

1.2 Contributions

The contributions of this thesis are:

• A new method for tackling comparison identification problem. We propose a

different problem formulation shifting focus from comparative sentence iden-

tification to comparison identification. Given a pair of entities within a sen-

tence, we are interested to answer if there is any comparative relation between

two entities. This point of view frames the identification as a form of relation

extraction. Due to the specificity of the problem domain, which imposes well-

defined syntactic structure on comparative sentences, we propose a novel re-

lation extraction method. The method operates on sentence dependency trees

and measures sentence similarity via Skip-node, a kernel function. Skip-node

captures both the syntax and lexicon of a sentence. An extensive evaluation on

manually annotated data shows effectiveness and efficiency of the proposed

approach.

• Maksim Tkachenko and Hady W. Lauw, A Convolution Kernel Approach
to Identifying Comparisons in Text, Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing, ACL, 2015.

• Comparative Relation Generative Model (CompareGem), a model for com-

parison interpretation. CompareGem connects two levels of interpretations:

sentence level and corpus level. At the sentence level it induces meaning of

each sentence or each comparison within a sentence. At the corpus level, it

summarizes individual comparison interpretations to build a complete rank-

ing of compared entities. The ranking is induced with respect to entity aspect,
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e.g., product functionality, portability, etc. The latent factors of the model

(i.e., comparison outcomes and aspects) can be inferred automatically in un-

supervised or supervised fashion. Through experiments on real datasets, we

demonstrate effectiveness of the proposed approach and show that the model

reflects innate properties of comparison corpora.

• Maksim Tkachenko and Hady W. Lauw, Generative Modeling of Entity
Comparisons in Text, Proceedings of the 23rd ACM International Confer-
ence on Information and Knowledge Management, CIKM, 2014;

• Maksim Tkachenko and Hady W. Lauw, Comparative Relation Genera-
tive Model, IEEE Transactions on Knowledge and Data Engineering, TKDE,
2017.

• An approach to model preference groups within a population of rankers. The

model is called Plackett-Luce regressions mixture, a graphical model, which

aims to discover latent preference groups and approximate their preference

ranking functions. A comparison is a special case of a ranking involving only

a pair of entities. We propose an efficient algorithm to fit the model parame-

ters and to induce preferences for a set of previously unobserved entities. The

model permits exploration and exploitation use. Its parameters can be easily

interpreted. We demonstrate effectiveness of the model through a thoughtful

empirical evaluation.

• Maksim Tkachenko and Hady W. Lauw, Plackett-Luce Regression Mix-
ture Model for Heterogeneous Rankings, Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management,
CIKM, 2016.

• CompareLDA, a supervised topic model for document comparisons. We want

to infer latent semantics associated with comparison signals of entities. For

example, for a set of graded essays, we want to know what makes a better

essay; for products, we want to know what makes a better product based on

their reviews. Given documents describing these entities along with their pair-

wise comparisons, the topic modeling approach is used to derive topics that

comply with a comparison supervision. A topic is a distribution of words that

6
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often co-occur with each other. These co-occurrence regularities may shed

some light on the comparisons decisions. We derive a variational inference

procedure for CompareLDA. Our experimental results show benefits of using

the proposed model over alternative supervised topic models.

• Maksim Tkachenko and Hady W. Lauw, CompareLDA: A Topic Model
for Document Comparison, Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, AAAI, 2019.
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CHAPTER 2

RELATED WORK

2.1 Opinion Mining

Often, we want to understand others’ opinions to make a good decision. This might

be a decision on which doctor to visit, which product to buy, or which hotel to stay

in. Critical decisions carry significant failure costs, which we all want to avoid.

Since our personal experiences are limited, others’ opinions may help us to antic-

ipate the consequences of our choices. Especially, when these opinions expressed

by the people that are somehow similar to us.

Opinion mining is a computational study of people’s opinions, sentiments, emo-

tions, evaluations, etc. [18]. For example, a general task of opinion mining is to

derive algorithms and methods for understanding the attitude of a writer towards

some entities [102]. The attitude may be an appraisal, a positive or negative senti-

ment, affective state, such as anger, sadness, excitement, happiness, etc. The entities

may be products, services, companies, individuals, issues, events, and so on.

Opinion mining is usually a study of natural language processing, computa-

tional linguistics, and text mining, because the largest proportion of opinions is

expressed in a written form. These are tweets, blog posts on social media (e.g.,

Twitter, Facebook) and reviews on e-commerce platforms (e.g., Amazon, Alibaba).

Taking advantage of these services, online users constantly contribute opinion con-

tent on a variety of topics, including politics, entertainment, technology, society,

8
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Opinion Mining

Sentiment Analysis
(Separate Evaluation)

Comparison Mining
(Joint Evaluation)

Text-Oriented Entity-Oriented

Figure 2.1: Opinion Mining

etc. The scale and diversity of the written opinions make them both attractive and

challenging to study. Besides the written opinions, the other forms are receiving a

considerable attention of the research community in recent years, the new modes

of data include audio recordings, video streams, and images [83, 123, 173]. It is

possible that these new forms of data in future will steer away the research focus

from text. Nevertheless, this study mainly focuses on written opinions and builds up

a foundation for comparison opinions, which can be exploited in any future study.

The following discussion can be reflected by the diagram shown in Figure 2.1.

We explain the rationale behind this categorisation and expand discussion of each

sub-field of opinion mining. This section mainly focuses on sentiment analysis,

discussion of comparison mining is presented in Section 2.3.

2.1.1 Joint and Separate Evaluations

Opinion mining is tightly related to decision theory and social psychology, since

it investigates how people evaluate entities. The psychology studies differentiate

two entity evaluation modes: separate evaluation and joint evaluation [65, 66].

Evaluation mode itself is a feature in the decision-making process and according

to research may significantly affect decisions. In separate evaluation, entities are

evaluated in isolation and independently; in joint evaluation, options are examined

simultaneously. The same categories may be adopted in opinion mining. In this

case, the study of separate evaluation deals with statements that assess entities in-

dependently from one another. For example, in sentences ‘I like A’ and ‘I like B’,
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entities A and B are apprised independently, and no connection can be derived be-

tween them. In fact, the majority of the works in opinion mining focus on separate

evaluation, which we attribute to sentiment analysis, and which we discuss in the

next subsection. Joint evaluation, in turn, aims to assess entities simultaneously,

these are expressions like ‘A is better than B’, the sentence states relation between

A and B and apprises them relatively. Drawing insights into how certain entities are

connected is a task of comparison mining.

Sentiment analysis and opinion mining are often considered as synonyms [101,

154]. A minor difference sometimes is drawn to distinguish the task domain for

these two studies, i.e., opinion mining focuses on polarity detection, whereas senti-

ment analysis is about emotion recognition [19]. In this work, we adopt psychology-

inspired categories of entity evaluation [66], and assume that sentiment analysis

deals only with the statements of separate evaluations. This choice serves a couple

of purposes: the evaluation-related categorisation does not disturb the conventional

view of sentiment analysis, and it allows us to talk about comparison mining as a

sub-study of opinion mining.

Hereafter, we discuss sentiment analysis in Section 2.1.2 and come back to com-

parison mining in Section 2.3.

2.1.2 Sentiment Analysis

Sentiment analysis, a computational study of people’s opinions expressed in sepa-

rate evaluations (see Section 2.1.1), is essentially the main focus of opinion mining

at the moment. It spreads across various domains, such as social media, finan-

cial microblogs, news articles, and reviews. Annually, over the past years, Interna-

tional Workshop on Semantic Evaluation (SemEval) organizes a number of senti-

ment analysis shared tasks [142, 157, 31, 121]. The shared tasks attract considerable

attention of researchers as well as industry.

10



CHAPTER 2. RELATED WORK

Text-oriented

A basic task of sentiment analysis is polarity classification [154]. Polarity classi-

fication occurs when an excerpt of text stating an opinion is classified as one of

two opposing sentiments, i.e., negative and positive. To avoid any ambiguity, we

assume that excerpts represent only one entity at a time. Thus, our main concern

of analysis is text itself. Classification of reviews, such as ‘one star’ vs ‘five stars’,

classification of comment ‘likes’ and ‘dislikes’ are common incarnations of polarity

classification. One may assign different degrees of sentiment to an excerpt [128],

for example, strongly positive vs. positive, including as well the neutral assessment

of the text, i.e., containing no sentiment. The latter is related to the task of sub-

jectivity classification, which aims to determine if an excerpt contains a subjective

evaluation or an objective statement [27].

Over the decades, there have been proposed variety of approaches to deal with

text-oriented sentiment analysis. The basis ground lies around understanding opin-

ion words (e.g., good, bad, like, hate) that usually trigger opinions and their syntac-

tic interactions. Thus, researchers propose to compile opinion lexicons and use them

to identify polarities of excerpts [6, 67]. However, such lexicons must be domain-

specific to capture domain-specific connotations, for example, compare ‘low price’

vs. ‘low blood pressure’, low is positive in the context of price, but may be nega-

tive in medical evaluation. Merely a presence of opinion word may not imply any

sentiment. To overcome these problems and capture ambiguity of the language, re-

searchers often turn to machine learning methods or handcrafted patterns along with

sentiment lexicons [167, 165, 147, 144, 37]. The difference between methods is de-

fined by the difference in patterns, if they work on word sequences, on dependency

tree representations, etc. As the result, having training data and domain expertise is

an essential part of modern sentiment analysis research.
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Entity-oriented

Entity-oriented sentiment analysis prioritises entities over their textual representa-

tions. Thereby, text becomes a proxy for opinions expressed about entities, that are

scattered around sentences, documents, or even various online resources. A basic

task of entity-oriented sentiment analysis is to identify a particular entity or a part of

an entity, which opinions are expressed about. The particular part is usually called

aspect or feature and the study is aspect-based or feature-based sentiment analysis

[101]. The aspect may be compactness of camera, its build quality, price, etc. The

aspects are entity related and defined by a particular domain. For example, sentence

‘I like that A is super portable but at the same time it is hard to hold’ comments

on two aspects of A, namely its portability and usability, where the portability is

endorsed (positive opinion), but the usability is considered as a flaw (negative opin-

ion).

The aspect set may be defined in advance or extracted from text [68, 145]. Basic

approaches to aspect extraction employ frequency analysis in order to locate the

salient nouns [67, 143]. Supervised labeling methods [73, 69, 15, 146] are widely

adapted for aspect extraction. Due to diversity in the ways one can introduce aspects

in text, topic modeling approaches are proposed to deal with the aspect extraction

problem [138, 14, 126]. There are also works focusing on modeling the correlation

between topics and user ratings [179].

Once the aspects are identified, we may produce a summary for every entity in

a text collection [68], which presents detailed table about aspects endorsed by the

users, proportion of negative and positive opinions, etc.

2.2 Comparison Studies

Comparison mining does not exist only as a part of opinion mining, but also as a part

of comparison studies (see Figure 2.2), which is a collective term for the research

involving joint evaluation of entities. For example, one may explore the problem of
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Comparison Studies

Aggregation
Prediction

(Learning to Rank)
Comparison Mining

Pointwise
(Separate Evaluation)

Joint Evaluation

Pairwise Listwise

Figure 2.2: Comparison Studies

finding similarities and differences between two documents. Another kind of joint

evaluation is a ranking problem, which requires a set of entities to be arranged with

respect to each other.

In this section, we discuss in details two sub-fields of comparison studies: aggre-

gation (Section 2.2.1) and prediction (Section 2.2.2) models. Comparison mining,

the third part of comparison studies, is discussed later in Section 2.3.

2.2.1 Aggregation

Aggregation models aim to combine multiple usually short orderings into a unified

ranking. For example, if we have three entities A, B, C, and we know that A is better

than B in some sense and B is better than C in the same sense, then we may arrive

at the complete ranking where A is at the first position, B is at the second, and C

is at the third. Note that this conclusion requires a transitivity assumption, because

comparison between A and C was never stated, but implied.

We may want to aggregate rankings, for example, to assess relative skill levels

of players in a sports tournament or to place relative customer preferences on the

scale, which indicates how likely a customer is to buy a certain product. A more

technical example is meta-search, which aims to combine several relevance rankings

of different search engines.

Comparisons or pairwise orderings are often aggregated to assess relative player
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skills in competitions like chess [40] or computer games [63]. Considerable amount

of studies were driven by psychometric research that were focused on studying pref-

erence scaling [13, 106, 166]. Despite being different in purpose, competition and

psychometric models are grounded on the same probability modeling principle: to

assess the probability that one entity wins over the other, where the notion winning

is defined for a particular task. Comparison aggregations requirements may vary

with respect to the domain and explicitly model situations like draw or team tourna-

ments [63]. The probability models are usually defined over the same set of latent

‘ability’ scores which can be compared across all the entities, and, thus, support

prediction via direct score comparison, although limited to the entities that already

‘participated’ in the competition.

It is natural to extend comparison aggregation models to accommodate aggre-

gation of ranked lists [141, 152, 35], when the latter makes sense. For example,

Plackett considers the problem of estimating the probability of a horse race out-

come [141]. Such extensions require specialized estimation procedures [71, 57].

Aggregation methods find their applications in meta-search [39, 176], where

different entity rankings coming from various sources need to be merged into a

single ranking. A number of methods were explored for this problem, for example,

Mallows’ model [149], Borda’s count [39, 42], graphical models [177], supervised

preference aggregation [176].

A set of methods explore the related problem of ranking clustering. Given a

set of entity rankings, we seek to determine the ranking groups with high inter-

agreement, e.g., to have high probability to rank entities in the same way. For

instance, [21] describes a nonparametric extension to model an infinite number of

entities, and clustered rankings via Dirichlet process mixtures. Others apply mixture

models for profiling Irish electorates, including [54, 53]. In turn, [55] explores

a mixture of Benter’s models, which are generalized forms of the Plackett-Luce.

[194] addresses the question of identifiability of Plackett-Luce mixture and proposes

an efficient method to learn mixture of two Plackett-Luce models.
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The common basis for this category of methods is entity representation. Each

entity is unique and is encoded via one-hot vector when required. Therefore, it

limits aggregation only to the entities that models can subsume during the train-

ing phase. The main purpose is information aggregation. Generalized prediction

models require feature-based entity representation or are able to compute these rep-

resentations on-the-fly.

2.2.2 Prediction

Learning to rank is an application of machine learning techniques for entity ranking

[46]. Usually, we want to induce a ranking function, given some ranking observa-

tions. For example, typical learning to rank application is to learn a ranking func-

tion, that assesses how relevant each document in a collection to a given query. In

this case, documents and queries may be represented as bag-of-word vectors, and

the learned ranking function may assess word similarity between query and doc-

ument. Besides, learning to rank has been successfully applied in computational

linguistics [159], computational biology [100], and recommender systems [82].

By the input representation and form of a loss function that is minimized dur-

ing the training, learning to rank approaches are usually divided into three groups:

pointwise, pairwise, and listwise [105]. I discuss each in the following subsections.

Pointwise

Pointwise approach assumes that the entities to be ranked have numerical or ordinal

scores. Thereby, learning methods are used to approximate these scores, essentially

casting learning to rank problem as regression learning problem. Thus, a number of

standard machine learning methods can be applied for this purpose [62, 195]. At the

learning and prediction phase entities are examined independently and, therefore,

pointwise approach falls under separate evaluation category (see Section 2.1.1 for

details).
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Pairwise

In contrast to pointwise approach, entities can be evaluated in the joint evaluation

mode. One example of joint evaluation is to simultaneously consider pairs of entities

for the optimization problem. For the pairwise approach, learning to rank is usually

approximated via classification problem. The ranking outcome for pair (A,B) is

encoded by a class label: whether A goes before B or otherwise. A binary classifier

then can tell which entity should be given the priority. For the learning to rank

objective, we want to minimize the average number of ranking inversions [80, 17].

Listwise

Another approach of joint evaluation is listwise approach. Listwise approach di-

rectly optimizes ranking quality measures, for instance, mean average precision,

Kendall’s tau, or discounted cumulative gain. The idea of optimizing target quality

measure is challenging, because most of the evaluation measures are not contin-

uous. Viable approximations are required for standard approximation techniques

[174]. Aggregation-inspired loss functions (see Section 2.2.1) are successfully used

for this purpose [183, 170]. Empirically, the listwise approach has been shown to

outperform the pointwise and pairwise approaches [20]. Examples of listwise ap-

proaches are Coordinate Ascent [119] and ListNet [20].

2.3 Comparison Mining

Comparison mining aims to discover, extract, analyse and summarise comparison-

related information. The focus of this study is on text, so the following discussion

is about comparison mining from text. Comparison mining emerges on the inter-

section of opinion mining and comparison studies. It handles opinion-related infor-

mation, yet it requires to solve satellite problems, that may be applied outside of

opinion analysis. For example, analysing a set of product reviews, we may want to

highlight similarities and differences of consumers’ opinions with respect to their
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Figure 2.3: Comparison Mining. The green marks the main contributions.

ratings in terms of their words, sentences, topics, aspects, etc. This particular analy-

sis example is neither aggregative, it does not merge entity rankings, nor predictive,

it does not focus on extrapolating rankings to unseen entities; however, it might use

them as a part of the analysis process.

In contrast to sentiment analysis (Section 2.1.2), comparison mining is an ap-

proach of joint evaluation (see Section 2.1.1 for details). All the methods of compar-

ison mining must jointly analyse a set of entities to draw a conclusion. Independent

analysis is not applicable, since a comparison involves at least two entities, and

mining information about this comparison is the goal.

In a way similar to sentiment analysis, comparison mining may be divided into

two categories: text-oriented and entity-oriented mining (Section 2.1.2). Text-

oriented mining seeks to discover and summarise comparison information for the

entities represented in their textual form, such as product descriptions, political

speeches, etc. These methods are discussed in Section 2.3.1. Entity-oriented mining

seeks to extract information about the entities from text. For example, processing

online reviews, we may want to discover which entities are good substitutes for

each other. Entity-oriented mining is discussed in Section 2.3.2. The categories of

comparison mining are outlined in Figure 2.3.

2.3.1 Text-oriented

Text-oriented comparison mining aims to find and summarise differences between

text collections. The collections are usually selected to have a certain property, for
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example, to have different star ratings (e.g., one-star vs. five-star reviews), speeches

from different political parities, reviews of competitive products, etc. The goal often

is to provide a short summary of the opposing view and to explore hypotheses about

their difference.

Term-based

Term-based comparison mining seeks to extract terms that are significantly repre-

sented in one collection but not the other. For example, we may expect that pos-

itive sentiment words occur more often in five-stars reviews than in one-star re-

views. These methods allow us to quantify this difference. The idea is to assign

the association score for pair term-document, which is often defined via relative

term frequencies. To a certain extent, term-based comparison mining resembles

filtering-based feature selection techniques [22], however, their purpose is different.

Whereas feature selection methods are generally used to reduce computation time

and improve prediction performance, comparison mining aims to support data un-

derstanding process. As a research tool, it often plays a supportive role in linguis-

tic investigations and has been successfully applied across domains. Term-based

methods have been used to explore narratives of positive and negative opinions in

restaurant reviews [81], as well as to analyse U.S. Senate speeches [122].

Text-based

Text-based mining seeks to accomplish the same task as term-based mining. Given

two collections of texts, a method is to select a small number of excerpts that

characterize their similarities and differences. For example, one problem of text-

based comparison mining is contrastive summarisation, which focuses on high-

lighting differences between two entities [95], Lerman and McDonald experimented

with customer reviews. Comparative summarisation constructs short summaries by

aligning excerpts of reviewers’ opinions for a pair of products [139]. The excerpts

are aligned on the basis of aspects, which is a common objective of research in
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entity-oriented sentiment analysis (see Section 2.1.2). Information to be selected

varies with the input domain and intended application [89, 161]. The methods are

often formulated as the optimization problems, constrained to look for similarities

and differences of two entities.

This area is tightly related to text summarisation, which is a process of short-

ening a text to create a summary of the original document [50] or a collection of

related documents [116]. The key difference between such kind of automatic text

summarisation and text-based comparison mining is the requirement to analyse a

set of different entities simultaneously.

Topic-based

Topic-based comparison mining takes the middle ground between term-based and

text-based comparison mining. The output of such methods is defined in terms of

topics, sets of co-occurring words [10], which often are used to discover hidden

semantic structures in text. The topics may be aligned with the prediction tasks like

regression or classification, such methods emerge as a family of supervised topic

models [150, 197]. A comparison-based supervision is a new line of study intro-

duced in this work [172] (see Chapter 6). As a part of decision-making process, it

is important to explain the ranking decisions that reviewers postulate. For example,

having entity rankings induced from text (see Section 2.3.2), we wish to uncover

the hidden semantics behind them. The closest to our study is the pointwise sLDA

[114]. There are yet others that pursue pointwise supervision, but explore other

angles that are not directly comparable. [92] introduces class-specific linear trans-

formation to modify the topic distribution of a document, which would be applicable

only to categorical labels but not continuous numerical responses. [197] explores

max-margin learning. [151, 150] associate a document with multiple labels (e.g.,

tags).

Regarding modeling of document connections, there are works that leverage

document-pair supervision, such as two documents being similar or being linked in
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a network [24, 117, 41, 187, 25].

Other topic models focus on idiosyncratic notions of “comparison” different

from ours. For instance, [191] compares two or more corpora, by finding shared

topics and distinct topics between the corpora. Similarly, [88] employs different

unsupervised procedure to satisfy the same goal. Also focusing on the corpora-level

comparison, [44] seeks to identify contrasting opinions on specific topics.

2.3.2 Entity-oriented

Entity-oriented comparison mining aims to acquire relations between entities. One

may be interested to know if two products are comparable [74], and if they are how

often consumers compare them, and what their preferences are [77]. The entities

are no longer represented by their textual form, but rather their interconnections that

must be extracted from text. The contributions of this study are scattered around this

category, which is indicated by the green in Figure 2.3.

Competitor Mining

Several studies explore mining of comparable entities or competitors [96, 72]. These

are entities, that are likely to share the same utility for a buyer, for example, lap-

tops with similar specifications but different brandings, different digital cameras in

the same product line, etc. When a customer wants to buy a product, she is likely

to choose it among the comparable entities. The study of discovering comparable

entities is called competitor mining.

One way to find competitors is to look for the similar entities, where similarity

can be defined over a set of entity attributes [93].

Other common approaches suggest to mine competitors from texts, such as re-

views. The idea is to use textual patterns to match the explicit mentions of compara-

bility, like ‘A is a good alternative to B’. In the example, A and B are indicated to be

comparable by the writer. The methods vary in the way the patterns are represented

and learned. A pattern is usually a ‘regular expression’, extended to match part-
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of-speech tags [76, 96]. Machine learning algorithms are successfully employed

[85]. Often similar patterns and learning algorithms are used to identify ‘compo-

nents’ within comparative sentences, i.e., entities, aspects, comparative predicates

[77, 64, 87, 85, 45], however this is not the focus of competitor mining.

In this study, we propose a machine learning method based on dependency

tree matching for extracting comparisons via kernel-based optimization [169] (see

Chapter 3), which empirically outperforms its competitors. The task is to derive if

a pair of entity mentions is in comparative relation. If two entities are compared

within text, they can be considered comparable. In this case, we assume that the en-

tity mentions are marked within sentences [77, 84] and different mentions linked to

each other when they represent the same entity [36]. The previous state of the art for

extracting comparisons is the baseline CSR approach [76]. For scientific text, [137]

explored handcrafted syntactic rules. Comparison identification is also studied in

other languages via similar approaches [70, 186, 91, 186, 192].

Other than comparison identification, dependency grammar has also found ap-

plications in natural language-related tasks, such as sentiment classification [127],

question answering [148, 99], as well as relation extraction [33, 16]. Often kernel

methods based on trees are applied to relation extraction. [28] applied convolution

kernels [61, 180] to natural language objects, which evolved into tree kernels, e.g.,

sub-tree [162], subset tree [29], descending-path kernel [98], partial tree [124]. Our

proposed kernel, Skip-node kernel, joins this list.

An alternative approach to mine comparable entities is to try to predict them

[188]. For example, Myungha at al. [74] employ graph-based clustering to complete

the graph of comparable entities. The nodes in such graph represent entities and

the edges are comparability relations, if we have initial information about entity

comparability, which can be obtained via text mining as mentioned above, then the

problem can be cast as the edge prediction problem.
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Comparative Relation Mining

Comparative relation mining expands the notion of being comparable and seeks

to interpret comparative expressions if possible. Comparative expressions imply

similarity or differences between entities, e.g., sentence ‘A beats B and C’ induces

partial ordering relation among entities: A is better than B, A is better than C, but B

and C are not compared. Comparative relation mining can be divided into a couple

of tasks: comparison interpretation and aggregation. Interpretation seeks to infer

the meaning of comparative excerpts, stating which entity should be ranked first.

It is often done upon extraction of comparable entities (see Section 2.3.2), where

patterns are labelled and immediately attach the preference class [91]. Such patterns

can be combined with a binary classifier to perform interpretation as classification

[77, 51, 184]. External informations, such as “pros” and “cons” sections in reviews

is also utilized in for comparison interpretation [51].

The aggregation part studies how to combine individual comparison relations

into ranked list. This can be accomplished by the aggregation models, see Sec-

tion 2.2.1 for details. A number of them were adopted in previous studies [91,

193, 97]. Another way to look at the problem of aggregation is to use PageRank

[133] on a graph, where the nodes are entities and edges encode information about

individual comparisons. However, we have shown that this is inferior to another

Bradley-Terry-Luce model [168].

In this study, we show that the combination of the interpretation and aggregation

parts of comparative relation mining in a unified graphical model outperforms the

other approaches [171], which deal with the problem in a pipeline manner, solving

the two problems independently. The unified approach is discussed in Chapter 4.

Preference Mining

Preference mining arises when a number of users have differing opinions about

which entities they prefer, and, as the result, naı̈ve aggregation models cannot be ap-

plied. In this case, an aggregation model has to recognize that a set of comparisons
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or rankings is not consistent and to be able to extract and express this inconsistency.

We propose to treat preferential differences at the level of groups, so that inside ev-

ery group the preferences are homogeneous [170]. Each group is then attached to a

ranking function that can be used to induce preference for a set of unseen entities on

behalf of the group member. Preference mining extends learning to rank research

(see Section 2.2.2) by assuming the existence of multiple ranking functions used

within the same set of entities [105]. The problem of ranking aggregation is differ-

ent to ours, as it seeks to combine multiple rankings instead [39]. Another related

work [56] relies on clustering instances in the feature space to obtain rankings. This

is a distinct problem, because it clusters instances by similarity in features, rather

than similarity in ranking functions. In contrast to collaborative filtering and other

recommender systems, preference mining does not seek to predict preferences of

an individual user and does not model user-specific parameters [1, 90]. In the same

way, personalized ranking approaches [156, 181, 104] are different from preference

mining. The extensive discussion on preference mining is presented in Chapter 5.
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CHAPTER 3

IDENTIFYING COMPARISONS IN TEXT

When weighing various alternatives, users increasingly turn to the social media,

by scouring online reviews, discussion forums, etc. Our goal is to extract from

such corpora those text snippets where users make direct comparisons of entities.

While sentiment analysis [135] may be helpful in evaluating individual entities,

comparison by the same author within a sentence provides an unambiguous and

more equitable basis for the relative positions of two entities on some aspects. For

example, sentence s1 in Table 3.1, taken from an Amazon review about a digital

camera, makes two distinct comparisons: #1) between “A630” and “A-series cam-

eras” and #2) between “A630” and “its competition”, with a clear sense of which

entity mention is the greater on some aspect (“larger”). Moreover, comparisons may

be objective (e.g., larger) or subjective (e.g., better), while sentiments are primarily

subjective.

ID Sentence Remarks

s1

The A630 is slightly larger than previous genera-
tion A-series cameras, and also larger than much
of its competition.

Contains two comparisons: (A630, A-
series cameras) and (A630, its competi-
tion).

s2
I got 30D for my wife because she wanted a bet-
ter camera.

Includes comparative predicate “better”,
but contains no comparison.

s3
I had D3100 and it was nice but the D5100 is
truly amazing.

No comparative predicate, but has a
comparison: (D3100, D5100).

s4
D7000 and D7100 do better at high ISO than
D300s.

Contains two comparisons: (D7000,
D300s) and (D7100, D300s).

Table 3.1: Example Sentences with≥ 2 Entity Mentions from Amazon.com Digital
Cameras Reviews.
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Problem Given a sentence and a specific pair of entity mentions, we seek to

determine if a comparison exists between those two mentions. In previous work, the

problem was formulated as identifying comparative sentences, i.e., those containing

at least one comparison [76]. This is not ideal because a sentence may contain more

than two entity mentions, and may be comparing only some of them. For instance,

s1 is comparative with respect to pair (A630, A-series cameras) and pair (A630, its

competition), but not pair (A-series cameras, its competition).

We therefore postulate that the more appropriate formulation is comparisons

within sentences. If a sentence compares two entities (A, B) with respect to aspect

Z, it should be possible to reformulate it into another sentence such as: “A is better

than B with respect to Z” [86]. Based on this definition, there is no comparison be-

tween (A-series cameras, its competition) in s1. Here, we adopt this apt definition

with a slight restriction to make it more practical, and seek to identify such compar-

isons automatically. We consider only sentences with at least two entity mentions

involved in gradable comparisons, i.e., a clear sense of scaling in the comparison

(e.g., A is better than B.). Such comparisons are more useful in investigating the

pros and cons of entities, as opposed to equative comparisons expressing parity be-

tween two mentions (e.g., A is as good as B.), or superlative comparisons expressing

the primacy of an entity with respect to unknown reference entities (e.g., A is the

best.).

Approach For English, there usually is a comparative predicate that anchors

a comparison, such as “better” or “worse”. However, many sentences with such

predicate words are not comparisons. Sentence s2 in Table 3.1 has the word “better”,

but does not contain any comparison between the entity mentions. Yet, other words

(e.g., “amazing”), though not a comparative predicate, could signify a comparison,

e.g., in s3 in Table 3.1.

[76] considers the “context” around a predicate. A sentence is transformed into

a sequence involving the predicate and the part of speech (POS) within a text win-

dow around the predicate (usually three words before and after). For instance, s2
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in Table 3.1 would be transformed into the sequence 〈PRP VBD DT better NN〉,

where PRP stands for personal pronoun, VBD for verb in the past tense, DT for

determiner, and NN for singular noun1. Such sequences are labeled comparative or

non-comparative, upon which [76] applies sequential pattern mining [2, 5, 140] to

learn class sequential rule (CSR). These CSRs are then used as features in classify-

ing comparative sentences.

While [76] makes some progress by considering context, its performance may

be affected by several factors. First, CSRs are not sensitive to entity mentions. It

may classify s1 as comparative generally, missing the nuance that s1 is not com-

paring the pair (A-series cameras, its competition). Second, as CSRs require a list

of comparative predicates, the quality and the completeness of the list are crucial.

For instance, “amazing” is not in their list, and thus the comparison in s3 may not

be identifiable. Third, due to the windowing effect, CSRs has a limited ability to

model long-range dependencies. For s4, a window of three words around the predi-

cate “better” excludes the word “than” that would have been very informative. Yet,

enlarging the window might then bring in irrelevant associations.

What is important then is not so much whether a sentence is comparative as

whether two entity mentions are related by a comparative relation. One insight we

draw is how comparison identification is effectively a form of relation extraction.

While there are diverse relation extraction formulations [33, 16, 130], our distinct

relation type is comparison of two entity mentions.

Armed with this insight, we propose a kernel-based approach based on a de-

pendency tree representation [132], with significant innovations motivated by the

comparative identification task. This proposed approach has several advantages

over CSR. Most importantly, it models dependencies between any pair of words

(including entity mentions), whereas CSR only relates a comparative predicate to

nearby POS tags. For other advantages, unlike CSR, this approach is contingent on

neither a pre-specified list of comparative predicates, nor a specific window length.

1For the comprehensive list of part-of-speech tags refer to [158].

26



CHAPTER 3. IDENTIFYING COMPARISONS IN TEXT

In Section 3.1, we give a formal overview of the comparison identification prob-

lem. In Section 3.2, we discuss the kernel approaches that have been used for re-

lation extraction, and develop Skip-node kernel, which is suitable for comparison

identification. In Section 3.3, we derive a formal computational framework for the

kernel. Section 3.4 discusses effectiveness and efficiency of the method through

experiments on real-life datasets. Section 3.5 concludes this chapter with the dis-

cussion.

3.1 Problem

The input is a corpus of sentences S concerning entities within a certain domain

(e.g., digital cameras). Every sentence s ∈ S contains at least two entity mentions.

The set of entity mentions in s is denoted Ms. For instance, sentence s4 in Table 3.1

contains three entity mentions: D7000, D7100, and D300s. The same entity may be

mentioned more than once in a sentence, in which case each mention is a distinct

instance.

As output, we seek to determine, for each pair of entity mentions (mi,mj) ∈Ms

in a sentence s ∈ S, a binary class label of whether s contains a comparison be-

tween mi and mj . For the pair (D7000, D7100) in s4, the correct class is 0 (no

comparison). For the other two pairs (D7000, D300s) and (D7100, D300s), the cor-

rect class is 1 (comparisons). We do not seek to identify the aspect of comparison,

which is a different problem of independent research interest (see Section 3.5).

Dependency Tree In order to represent both the lexical units (words) as well

their structural dependencies seamlessly, we represent each sentence s as a depen-

dency tree T . For example, Figure 3.1(a) shows the dependency tree of s4 in Ta-

ble 3.1. The tree is rooted at the main verb (“do”), and each dependency relation

associates a head word and a dependent word. To describe a tree or any of its sub-

structures, we use the bracket notation. Figure 3.1(a) in this notation is

[do [D7000 [and] [D7100]] [better [at [ISO [high]]]

[than [D300s]]]].
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D7000 and D7100 do better at high ISO than D300s

(a) original dependency tree

#camera and #camera do better at high ISO than D300s

(b) modified dependency tree for (D7000, D7100)

#camera and D7100 do better at high ISO than #camera

(c) modified dependency tree for (D7000, D300s)

D7000 and #camera do better at high ISO than #camera

(d) modified dependency tree for (D7100, D300s)

Figure 3.1: Modified Dependency Trees.

Here, we make two observations. First, there is one tree even for a sentence with

multiple pairs of entity mentions. Second, the information signalling a comparison

is borne by the structures around the mentions (e.g., [better [than]]), rather

than the actual mentions (e.g., “D7000”). These lead us to introduce a modified de-

pendency tree that is distinct for every pair of mentions, achieved by replacing each

entity mention of interest by a placeholder token. Here, we use the token “#cam-

era” for illustration. Figure 3.1(b) shows the modified tree for the pair (D7000,

D7100). This enables learning in an entity-agnostic way, because the token ensures

that sentences about different cameras are interpreted similarly.

Convolution Kernel Observe how the trees of the pair (D7000, D300s) in

Figure 3.1(c) and the pair (D7100, D300s) in Figure 3.1(d), which are both compar-

isons, share certain substructures, such as [do [better [than [#camera]]].

In contrast, the tree in Figure 3.1(b) for the pair (D7000, D7100), which is not a

comparison, does not contain this substructure. What we need is a way to system-

atically examine tree substructures to determine the similarity between two trees.

Kernel methods offer a way to measure the similarity by exploring an implicit
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feature space without enumerating all substructures explicitly. Suppose that T de-

notes the space of all possible instances. A kernel function K is a symmetric and

positive semidefinite function that maps the instance space T×T to a real value in

the range of [0,∞) [61]. A tree kernel function can be reformulated into a convolu-

tion kernel [28], shown in Equation 3.1.

K(T1, T2) =
∑
ni∈T1

∑
nj∈T2

D(ni, nj) (3.1)

Here, ni and nj denote each node in their respective tree instances T1 and T2.

D(ni, nj) is the number of common substructure instances between the two sub-

trees rooted in ni and nj respectively. The exact form of D(ni, nj) depends on the

specific definition of the tree kernel space. In Section 3.2, we systematically explore

the applicability of various tree kernel spaces, leading to the introduction of the new

Skip-node Kernel.

The appropriate kernel function can be embedded seamlessly in kernel methods

for classification. In this work, we use the Support Vector Machines (SVM) [164].

3.2 Tree Kernel Spaces

Tree kernels count substructures of a tree in some high-dimensional feature space.

Different tree kernel spaces vary in the amount and the type of information they

can capture, and thus may suit different purposes. To find a suitable tree kernel

for the comparison identification task, we first systematically explore a progres-

sion of known tree kernel spaces, including Sub-tree, Subset Tree, and Partial Tree.

Through the use of appropriate examples, we show how these existing tree kernel

spaces may not be appropriate for certain instances. This section culminates in the

introduction of a new feature space that we call Skip-node.

Sub-tree (ST) Space In this space, the basic substructure is a subgraph formed

by a node along with all its descendants. Applying this kernel to two dependency

trees of similar sentences may not be appropriate due to, for example, modifier
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words that change the dependency structure. To illustrate this, let us examine the

two dependency parses in Figure 3.2. Both support comparisons, and ideally we

can detect some level of similarity. However, if we consider only sub-trees, the two

dependency trees share in common only two fragments: [#camera] and [is].

Neither of these fragments is indicative of a comparison.

#camera is better than #camera

(a)

(b)

Figure 3.2: Dependency Parses. The working example for the Sub-tree, Subset
Tree, Partial Tree kernels.

Subset Tree (SST) Space We next consider the SST kernel, which computes

similarity in a more general space of substructures than ST. Any subgraph of a

tree that preserves production rules is counted. This definition suggests SST is

intended more for a constituency parse [124]. In this feature space, the parses in

Figure 3.2 now have in common the following fragments: [#camera], [is],

[than [#camera]]. This representation is better than ST’s, e.g., the fragment

[than [#camera]] is informative. However, as a whole, the set of features are

still insufficient to identify a comparison.

Partial Tree (PT) Space In turn, the PT space allows breaking of production

rules, making it a better choice than SST for dependency parses. PT kernel would

find that the parse in Figure 3.2(a) with all its subgraphs can be matched as a whole

within the parse in Figure 3.2(b), identifying a close match.

However, PT kernel is prone to two drawbacks. By generating an exponential

feature space, it may overfit and degrade generalization [34]. More importantly,

PT considers tree fragments independently from their contexts, resulting in features

involving non-related parts of a sentence. This is particularly apparent when we

consider multiple entities within a sentence.
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#camera is twice as expensive as #camera

(a)

Previously I had D60 and D7100 and #camera is twice as good as #camera

(b)

Previously I had D60 and #camera and this camera is twice as good as #camera

(c)

Figure 3.3: Dependency Parses. The working example for the Partial Tree, Skip-
node kernels.

Suppose that Figure 3.3(a) is in our training set, and we have the sentence below

in the testing set:

Previously, I had D60 and D7100, and this camera is twice as good as

D60.

Figure 3.3(b) shows the parse for (this camera, D60), and Figure 3.3(c) for (D7100,

D60). The former is a comparison, and should match Figure 3.3(a). The latter is not

and should not match. PT kernel cannot resolve this ambiguity, computing the same

similarity value to Figure 3.3(a) for both. The common features are: [#camera],

[is], [twice], [as], and [as [#camera]].

Skip-node (SN) Space Figures 3.3(a) and 3.3(b) share a similar substructure

“twice as ... as”, but because they use different words to express the comparisons

(“expensive” vs. “good”), previous kernels treat their features disjointly, missing

out on their similarity. To reduce this over-reliance on exact word similarity, we

seek a feature space that would allow some degree of relaxation in determining the

structural similarity between trees.
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#camera is twice as as #camera

(a)

Previously I had D60 and D7100 and #camera is twice as as #camera

(b)

Figure 3.4: Dependency Parses with Skipped Nodes.

We therefore propose the Skip-node (SN) space, which represents a generalized

space of tree fragments, where some nodes can be “skipped” or re-labeled to a

special symbol ‘*’ that would match nodes of any label. A restriction on this space

is that each skip symbol must connect two non-skip (regular) nodes. The implication

is that skips code for some notion of connecting distance between non-skip nodes.

Moreover, the space would not include features such as [* [* [#camera]]]

that serve only to indicate the presence of ancestors, and not any relationship of

non-skip nodes.

Figure 3.4 resolves the ambiguity in Figure 3.3 by skipping the words “ex-

pensive” and “good”, introducing a new set of features: [* [#camera] [is]

[twice] [as] [as [#camera]]]. Note how in this case the skip symbol

effectively serves as a “context” that pulls together the previously disjoint features

identified by the PT kernel. These new context-sensitive features would allow a

match between the earlier Figures 3.3(a) and 3.3(b), but not Figure 3.3(c).

Thus, SN space effectively generalizes over the PT space, and enriches it with

context-sensitive features. To avoid overfitting, in addition to decay parameter λ

used in PT kernel, we associate SN kernel with two other parameters. The SN

space consists of rooted ordered trees where some nodes are labeled with a special

skip symbol ‘*’, such that the number of regular nodes (not marked with ‘*’) is

at most S, and each skip node is within a distance of L from a non-skip node.

This engenders a graceful gradation of similarity as the number of skip nodes in a
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substructure grows, yet imposes a limit to the extent of relaxation.

3.3 Skip-node Kernel Computation

We now discuss the computation of Skip-node Kernel, first exactly, and thereafter

approximately.

3.3.1 Exact Computation

We define the alignment of common fragments between two trees in the Skip-node

space. When S = 1, only singleton nodes with the same labels contribute to

the kernel, and alignment is straightforward. When aligning fragments with two

regular nodes (S > 1), we consider their connection structure and the order of

the child nodes to prevent over-counting substructures with the same labels (e.g.,

[*[as][as]] in Figure 3.4). To preserve the natural order of words in a sen-

tence, we enumerate the tree nodes according to preorder, left-to-right depth-first

search (DFS) traversal.

In turn, the connection structure is defined by the skip-node path connecting

two regular nodes. This can be expressed as a sequence of upward (towards the

root) and downward (towards the leaves) steps we need to perform to get from the

leftmost to the rightmost regular node. Due to the natural ordering of regular nodes,

upward steps are followed by downward steps. The sequence can be expressed as

a pair of numbers: 〈ρ(nl, u), ρ(nr, u)〉, where nl is the leftmost regular node of a

fragment, nr is the rightmost one, u = σ(nl, nr) is the lowest common ancestor of

nodes nl, nr, and ρ returns the number of edges in the shortest path connecting two

nodes.

Suppose rooted tree T = (N,E) has corresponding preorder DFS enumeration

N = (n1, n2, ..., n|N |). For i < j, we define a function π(ni, nj), which canonically
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represents the way two nodes are connected in a tree, as follows:

π(ni, nj) = 〈ρ(ni, σ(ni, nj)), ρ(nj, σ(ni, nj))〉.

DEFINITION 1 (STRUCTURAL ISOMORPHISM): Given trees T1 = (N1, E1),

T2 = (N2, E2), we say that pairs of nodes (vi, ui′), (vj, uj′) ∈ N1 × N2 are struc-

turally isomorphic and write (vi, ui′) ! (vj, uj′) when π(vi, vj) = π(ui′ , uj′) on

the valid domain.

It can be shown that structural isomorphism is a transitive relation. This property

allows us to grow aligned fragments by adding one node at a time:

(vi, ui′) ! (vj, uj′) ∧ (vj, vj′) ! (vk, uk′)⇒ (vi, ui′) ! (vk, uk′).

To compute the kernel, we use a graph-based approach to enumerate all the

common substructures in the Skip-node space. Given two trees T1 and T2, we begin

by aligning their nodes. The sets of nodes in T1 and T2 are N1 and N2 respectively.

Let NG be a set of pairs (ni, nj) ∈ N1 × N2, where ni and nj have the same label.

On top of NG, we build a graph G = (NG, EG). We draw an edge between two

vertices (vi, vk), (uj, ul) ∈ NG, if (vi, uj) ! (vk, ul) and ρ(vi, vk) ≤ L.

Any connected subgraph of G represents a feature in the Skip-node space com-

mon to both T1 and T2. The kernel then needs to count the number of connected

subgraphs of sizes not more than S. To see that this procedure is correct, we sim-

ply need to trace back the construction of graph G, and build a bijection from a

subgraph of G to the corresponding fragments of T1 and T2.

Enumerating all the connected subgraphs of a given graph requires exponential

time. The algorithm described above requires O(|N1||N2| +
∑S

i=1

(|NG|
i

)
) time,

assuming that the distance between two nodes in a tree can be computed in O(1)

with appropriate linear preprocessing. See [8] for insight. The exact computation

is still tractable on the condition that S and L are not very large. This condition

would probably hold in most realistic scenarios. Yet, to improve the practicality of
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the kernel, we propose a couple of approximations as follows.

3.3.2 Approximate Computation

One reason for the complexity of the Skip-node kernel is that although the graph

G is formed by aligning two trees, by allowing connections through skips, G itself

may not necessarily be in the form of a tree. In deriving an approximation, our

strategy is to form G through alignment of linear substructures of the original two

trees. A Skip-node space over linear structures can be computed in polynomial time

using dynamic programming.

Linear Skip-node One approximation is to consider linear substructures in

the form of root-paths. A root-path is a path from the root of a tree to a leaf. Given

two trees T1 and T2, with DFS enumerated nodes N1 = (v1, v2, ..., vm1) and N2 =

(u1, u2, ..., um2) respectively. Here, v1 and u1 are roots, and vm1 and um2 are the

leaves. Starting with common fragments at the leaves, we grow them into larger

common fragments towards the root. We call this approximation Linear Skip-node.

Figure 3.5(a) shows examples of features considered by Linear Skip-node for the

illustrated tree T in skip-node space (S = 3, L = 2).

The kernel function can be decomposed into:

K(T1, T2) =
∑
vi∈N1

∑
uj∈N2

S∑
s=1

λsD(vi, uj, s),

whereD(vi, uj, s) is the number of common substructures of size swith the leftmost

regular nodes vi and uj . λ is a decay factor for substructure size.
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The recursive definition of the kernel is:

D(vi, uj, s) =
∑

i<k≤m1

∑
j<l≤m2

I(vi, vk, uj, ul)D(vk, ul, s− 1),

D(vi, uj, 1) =


1 if label(vi) = label(uj),

0 otherwise;

I(vi, vk, uj, ul) = 1(vi,uj)!(vk,ul) · 1ρ(vi,vk)≤L · 1(vi is an ancestor of vk),

where 1c equals 1 when constraint c is satisfied and 0 otherwise. Note that the

first two factors of indicator function I just represent the general Skip-node space

constraints, the last factor ensures that features are computed along the root-paths.

Lookahead Skip-node The second approximation, Lookahead Skip-node, is

related to the observation that when growing a substructure, we do not have to

confine the growth only towards ancestors, as DFS traversal already ensures iterative

manner of computation. In other words, the constraint vi is an ancestor of vk can be

dropped:

I(vi, vk, uj, ul) = 1(vi,uj)!(vk,ul) · 1ρ(vi,vk)≤L.

In addition to those features generated by Linear Skip-node in Figure 3.5(a),

Lookahead Skip-node can generate additional tree substructures, shown in Fig-

ure 3.5(b). The approximation can be computed using different DFS enumerations,

which may result in different feature sets. In our experiments, we used pre-order

left-to-right enumeration. Given the enumeration of tree T as in Figure 3.5, we start

to grow feature fragments from node n4. According to the Skip-node space con-

straints, the growth can only proceed to nodes n1 or n2. Once any of these nodes

is attached to n4, we lose tree fragments containing n3, as the procedure allows

us to grow substructures only towards nodes with smaller (earlier) DFS enumera-

tion numbers. Figure 3.5(c) shows the fragments that Lookahead Skip-node cannot

capture2.

2In this particular case, all features could have been computed by Lookahead Skip-node using
preorder right-to-left DFS enumeration, although it may not be true in general.
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Figure 3.5: Features of T in skip-node space (S = 3, L = 2). The numbers indicate
pre-order left-to-right DFS enumeration of T . The dashed circles represent skip
nodes. Subfigures: (a) - modeled by all; (b) - modeled by Lookahead Skip-node,
but not by Linear Skip-node; (c) - modeled only by Exact Skip-node.

Domain # sentences % comp. # pairs % comp.

Camera 1716 59.4% 2170 49.9%

Cell 821 35.2% 1110 30.5%

Table 3.2: Dataset Statistics for Each Domain.

The computation procedure is similar for both approximations and requires

O(S|N1|2|N2|2).

3.4 Experiments

Data For experiments, we compiled two annotated datasets in two domains: Dig-

ital Camera and Cell Phone from online review sentences. The reviews were col-

lected from Amazon and Epinions3.

We identified the entity mentions through dictionary matching, followed by

manual annotation to weed out false positives. Each dictionary entry is a product

name (e.g., Canon PowerShot D20, D7100) or a common product reference (e.g.,

this camera, that phone). The dataset includes only sentences that contain at least

two entity mentions. Every pair of entities within a sentence was annotated with

a comparative label according to the definition given in Section 3.1. A sentence

is comparative if at least one pair of entities within it is in a comparative relation.

Table 3.2 shows the dataset properties, in terms of the number of sentences and the

3We used already available snapshots for Epinions dataset:
http://groups.csail.mit.edu/rbg/code/precis/.

37



CHAPTER 3. IDENTIFYING COMPARISONS IN TEXT

Camera Cell

P R F1 P R F1

CSR 74.3 52.3 61.3 48.9 61.5∗ 54.3

BoW 76.9 76.3 76.6 62.2 58.0 59.8

BoW† 77.3 71.9 74.4 69.0 56.3 61.8

SNK 80.5∗ 75.2 77.7∗∗ 77.2∗ 55.1 64.1∗

Table 3.3: Comparison Identification.

percentage that are comparative sentences, as well as the number of pairs of entity

mentions and the percentage that are comparative relations. There are more pairs

than sentences, i.e., many sentences mention more than two entities.

This dataset subsumes the annotated gradable comparisons of [86] derived from

Epinions reviews on Digital Cameras. [76]’s dataset is inapplicable, due to its lack

of entity-centric comparison.

Evaluation The experiments were carried out with SVM-light-TK framework4

[79, 125], into which we built Skip-node Kernel. We further release a separate stan-

dalone library that we built, called Tree-SVM, which does SVM optimization using

the tree kernels described in this study. The sentences were parsed and lemmatized

with the use of the Stanford NLP software [26].

The experiments were done on 10 random data splits in 80:20 proportion of

training vs. testing. Performance is measured by using F1, which is the harmonic

mean of precision P and recall R: F1 = 2PR
P+R

. The average results are reported.

The statistical significance5 is measured by randomization test [190]. The hyper-

parameters, including the baselines’, were optimized for F1 through grid-search.

3.4.1 Comparison Identification

Our first and primary objective is to investigate the effectiveness of the proposed

approach on the task of identifying comparisons between a pair of entity mentions.

4http://disi.unitn.it/moschitti/Tree-Kernel.htm
5When presenting the results, an asterisk indicates that the outperformance over the second-best

result is significant at 0.05 level. Two asterisks indicate the same at 0.1 level.
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Camera Cell

P R F1 P R F1

CSR 74.6 51.7 60.9 50.9 61.2∗ 55.3

BoW 77.5 76.3 76.8 63.4 57.7 60.2

BoW† 77.6 72.4 74.9 70.9 57.3 63.2

SNK 81.0∗ 75.2 78.0∗∗ 77.9∗ 54.8 64.2

Table 3.4: Comparative Sentence Identification.

Previous work focused on identifying comparative sentences. We compare to three

baselines. One is CSR, implemented following the description in [76]. Another is

BoW, classification using bag-of-words as features. For the baselines, if a compar-

ative sentence contains more than one pair of entities, we assume that every pair

is in comparative relation. The third baseline, BoW†, considers only the words in

between of the two target entities.

Table 3.3 shows the performance on the comparison identification task (best

results are in bold). In terms of F1, it is evident that SNK outperforms the base-

lines. This is achieved through significant gains in precision. It is expected that the

baselines tend to have a high recall. CSR benefits from the human-constructed pre-

defined list of comparative keywords and key phrases that a kernel-based method is

unable to learn from a training split. BoW† tends to have a higher precision than the

other baselines, as it is able to distinguish between different pairs of entities within

one sentence.

While SNK may have an inherent advantage over CSR or BoW due to its entity

orientation, to investigate the effectiveness of the method itself, we now compare

them on the previous task of comparative sentence identification. Table 3.4 shows

that even in this task, SNK still performs better than the baselines. Comparing

Table 3.3 and Table 3.4, the results also concur with the intuition: once we fold up

multiple entity pairs in a sentence into a comparative sentence, we observe a drop

in recall and an increase in precision.
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Camera Cell

P R F1 P R F1

STK 67.5 64.0 64.9 43.7 41.9 42.6

SSTK 72.1 72.6 71.8 79.6 42.4 54.9

PTK 79.2 74.9 76.9 72.3 56.0∗∗ 62.7

SNK 80.5∗ 75.2 77.7∗∗ 77.2 55.1 64.1∗

Table 3.5: Comparison Identification: Tree Kernels.

Camera Cell

P R F1 P R F1

STKBoW 79.9 65.1 71.7 77.5 45.3 56.8

SSTKBoW 78.0 73.5 75.6 71.8 54.5 61.6

PTKBoW 78.6 74.1 76.2 71.0 53.8 60.8

SNK 80.5 75.2∗∗ 77.7∗ 77.2 55.1 64.1∗∗

Table 3.6: Tree Kernels Combined with Bag-of-Words.

3.4.2 Tree Kernel Spaces

Our second objective is to explore the progression of feature spaces discussed in

Section 3.2. Table 3.5 reports the results on comparison identification task. The F1

columns show that the performance gradually increases from STK to SNK along

with the increase in the complexity of feature space. PTK and SNK can be con-

sidered high-variance estimators due to the power of their feature spaces. The data

is such that these kernels may not have fully modeled the feature space completely

enough to show even sharper differences.

SNK’s parameters were optimized to non-trivial cases (S > 1 and L > 1) by the

grid-search, i.e., S = 3 and L = 2 for Digital Camera and S = 2 and L = 3 for Cell

Phone. The trivial case S = 1 represents a standard bag-of-words feature space,

i.e., this space is embedded into Skip-node space whenever S > 1. To show that

SNK does not merely take advantage of this simple space to compete with structural

kernels, we carried out another experiment where we combined STK, SSTK, and

PTK with bag-of-word representation of a sentence. Table 3.6 shows that surpris-
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Camera Cell

P R F1 P R F1

Linear SNK 78.9 77.1∗ 77.9 71.8 55.3 62.2

Lookahead SNK 80.5 75.2 77.7 71.8 55.3 62.2

SNK 80.5 75.2 77.7 77.2∗ 55.1 64.1

Table 3.7: Effectiveness: SNK vs. Approximations.
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Figure 3.6: Efficiency: SNK vs. Approximations.

ingly this combination harms the quality of PTK. STK and SSTK gain more from

bag-of-words features. Nevertheless, the overall outperformance by SNK remains.

3.4.3 Skip-node Kernel Approximations

Our third objective is to study the utility of the approximations of SNK described in

Section 3.3. Table 3.7 reports the performance of the approximations. For Camera,

the performance of Lookahead SNK and SNK are the same. In turn, Linear SNK

represents more restricted features, yielding a drop in precision and a gain in recall,

resulting in the best F1. For Cell Phone, the approximations are close, but the

original SNK has the best F1.

To study the running time, we randomly select 500 sentences. Figure 3.6 shows

the time for applying a kernel function to 250k pairs of sentences when we vary two

parameters: S and L. When S varies, SNK running time has exponential behaviour,

whereas the approximations show fairly linear curves. L seems to influence the

computation time linearly for SNK and and its approximations. The experiments

were carried out on a PC with Intel Core i5 CPU 3.2 GHz and 4Gb RAM.
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This experiment shows that the original SNK is still tractable for small S and L,

which turn out to be the case for optimal effectiveness. If efficiency is of paramount

importance, the two approximations are significantly faster, without much degrada-

tion (none in some cases) of effectiveness.

3.5 Discussion

Skip-node kernel gives another perspective on sparsity, employing structural align-

ment of the tree fragments, when labels cannot be matched exactly. This approach

differs from [32, 163], which allow soft label matching via lexical similarity over

distributional word representation, yet lexical similarity can be incorporated into

Skip-node kernel. Skip-node kernel may also be applied to other types of trees

(e.g., constituency trees [196]) or directed acyclic graphs.

Once the well-rolled methodology for identifying comparison is designed, we

must proceed with the comparison interpretation. Having a large corpus of com-

parisons, we would like to explore if it is possible to induce the user preferences

for each individual sentence (which entities is preferred in a comparison) as well

as to induce the overall ranking of the entities with respect to the observed corpus.

Chapter 4 investigates this question.
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MINING COMPARATIVE RELATIONS

Given the abundance of text reviews on the Web, we seek to mine these reviews

to assist consumers in making well-informed comparisons of entities. That would

allow consumers to benefit from the wisdom of the crowd to determine the relative

quality of entities, from users’ vantage point.

For comparison mining, the basis for comparison is a comparative sentence

about two entities. The following example compares CANON EOS 50D vs. CANON

EOS 40D in terms of image quality: “The 50D is sharper than my 40D and the

images are not soft.” One user provides a common benchmark and context in com-

paring two entities. Table 4.1 shows several more examples for two pairs of digital

cameras. To maintain focus, we deal with sentences involving two entities. From

sentences s1 to s3, we observe some variance in terms of which entity is considered

better, and the words used to express the comparison. Sentences s4 and s5 give

examples for different entities and aspects.

Problem. Given a corpus of comparative sentences, relating pairs of entities

in a particular domain (e.g., digital cameras), we seek to derive the comparative

relations among the entities, i.e., between any two comparable entities, which one

is better with respect to each aspect. The input corpus of comparative sentences

may be obtained from user-generated content expressing user preferences, such as

reviews, through comparative sentence identification (see Section 4.5).

Naturally, comparative relations ought to be modeled at two levels. First, at the

43



CHAPTER 4. MINING COMPARATIVE RELATIONS

Entities ID Aspect Example Comparative Sentences

CANON EOS 40D
CANON EOS 50D

s1 Image Quality
I am surprised to see that the images on the 40D
are better than the 50D.

s2 Image Quality
And from the research I did it appears the 50D’s
images can be sharpened and still have more de-
tail than the 40D.

s3 Image Quality
The 50D is sharper than my 40D and the images
are not soft.

CANON REBEL XSI

CANON EOS 40D

s4 Functionality
After visiting Best Buy and actually trying the
cameras out the XSi felt like a toy compared to
its big brother the 40D.

s5 Form Factor
I picked the XSi over the 40D primarily because
of weight (I like to hang cameras off telescopes ,
weight is an issue).

Table 4.1: Comparative Sentences about Digital Cameras from Amazon.com.

level of a sentence, e.g., s1 in Table 4.1 favors CANON EOS 40D, while s3 favors

CANON EOS 50D. Second, at the level of entity pairs, whereby sentence-level

relations are aggregated into the comparative relation, e.g., whether CANON EOS

50D is better than CANON EOS 40D. Both are important and useful. The former

provides supporting evidence, the latter provides a summative view.

In addition, comparative relations also need to be studied in the context of each

aspect. For instance, if one camera is lighter than another, it does not necessarily

imply that it would also have a better image quality. Moreover, the words used to

express superiority or mediocrity vary across aspects. While “higher” may connote

positively for functionality or image quality, it may connote negatively for price.

Approach. The previous approach to deal with the afore-mentioned two levels

of comparison is to solve them as a pipeline, by first determining sentence-level

comparisons, and then aggregating them into entity-level comparisons. Not only is

this fragmentation unnecessary, but it could also be detrimental when errors from

one level propagate to the next.

In this study, we propose an integrated approach to exploit the synergy owing

to the inherent relation between sentence-level and entity-level comparisons. Intu-

itively, if one entity is indeed better than another, we would expect that many com-

parative sentences would compare the former favorably to the latter. Thus, knowing

which entity is better helps to determine the comparison in a sentence, and vice
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ID Training Sentence ID Testing Sentence
d1 e1 is smaller than e2 d5 e1 is thinner than e3

d2 e2 is smaller than e3 d6 e4 is thinner than e5

d3 e3 is smaller than e4

d4 e3 is smaller than e5

Table 4.2: Illustrative Corpus.

(a) (b)

(c)

Figure 4.1: Comparison Graph Based on Table 4.2

versa.

We now illustrate this important intuition with a mock-up example in Figure 4.1

involving the 6 sentences shown in Table 4.2, concerning 5 entities {e1, e2, e3, e4, e5}.

Let us suppose the meaning of the first four sentences {d1, d2, d3, d4} with the word

“smaller” is already known. For form factor, “smaller” is better. That will allow

us to confidently rank some pairs, by drawing a bold directed edge from the worse

entity to the better entity, e.g., from e2 to e1, since “e1 is smaller than e2”. Fig-

ure 4.1(a) show the comparison graph constructed from these “known” sentences.

From here, we could make further inferences to answer another couple of ques-

tions. One is which of e4 or e5 is better, since there is no clue from the bold edges

alone. Another is the meaning of the last two sentences, since we have not yet

understood the meaning of “thinner”. Considering these two questions separately
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does not offer an answer. However, jointly they allow us to arrive at an answer to

both.

Since e1 ← e2 ← e3, by transitivity, we can infer that e1 ← e3, and update the

comparison graph with the dotted arrow as in Figure 4.1(b). In turn, if e1 ← e3, the

interpretation of “e1 is thinner than e3” can be inferred, i.e., “thinner” implies the

first-mentioned entity is better. This allows us to parse the last sentence to infer that

e4 ← e5 (dotted). We thus can recover the correct rank order e1 ← e2 ← e3 ←

e4 ← e5 (see Figure 4.1(c)).

We leverage on the above intuition to build a joint model for learning the com-

parative relations among entities, both at the sentence level and the entity level.

We propose an integrated approach for comparative relation mining, which is novel

compared to the previous pipelined approaches. Our integrated formulation is pre-

sented in Section 4.1. We design a generative model (see Section 4.2), called

CompareGem, which stands for COMPArative RElation GEnerative Model. We

turn to generative modeling because it offers significant advantages in connecting

sentence-level and entity-level comparisons seamlessly. It has greater flexibility in

accommodating supervised and unsupervised settings. While aspect identification

is not our main focus, it is a necessary component for studying comparisons, and

CompareGem has the flexibility of both working with observed aspects, as well as

learning latent aspects. In order to accommodate different formats of ranking en-

tities, either via a discrete or a continuous range of rank scores, we develop two

inference algorithms for CompareGem, based on Gibbs sampling and Variational

method respectively (see Section 4.3). In Section 4.4, through experiments on real

datasets, we show that CompareGem outperforms the pipelined baselines, underlin-

ing the utility of integrated approach for comparative relation mining. Section 4.5

conclude this chapter with a discussion.

46



CHAPTER 4. MINING COMPARATIVE RELATIONS

4.1 Problem

As input, we consider set of entities E (e.g., digital cameras). For each pair of

entities ei, ej ∈ E, Sij denotes the set of comparative sentences involving ei and

ej . For instance, in Table 4.1, the pair of entities CANON EOS 50D and CANON

EOS 40D are associated with a set of three comparative sentences {s1, s2, s3} on

image quality. Some pairs may not have any comparative sentence, if they are never

compared by any user, i.e., Sij = ∅. The union is denoted S =
⋃
ei,ej∈E Sij . We

will describe how S can be obtained from a corpus of reviews in Section 4.4.1.

Our objective is to learn the comparative relation between any two entities ei or

ej . Using the example of CANON EOS 50D and CANON EOS 40D in Table 4.1,

we see that s1 favors CANON EOS 40D, whereas s2 and s3 favor CANON EOS

50D. In this case, there is slightly more evidence that CANON EOS 50D is better

in image quality. The more evidence there is in favour of one direction, the more

confident we would be. The aspect a ∈ A of a comparison (e.g.., image quality)

is to be derived, where A denotes a set of possible aspects. We assume a sentence

belongs to only one aspect. Sija denotes a set of comparative sentences on aspect a

involving entities ei and ej .

To capture the notion of aggregative “quality”, we associate each entity with an

aspect-specific rank score ria ∈ R. ei is “better” than ej on aspect a if ria > rja.

This rank score is latent, and needs to be learnt. The sentences are not always

unanimous in terms of which entity is favored. Even when there is a consensus,

there may also be some variance. It is important not just to capture the relation at

the entity level, but also the comparative direction at the sentence level.

With the notations in place, we are now ready to state our problem formally, as

follows.

Problem 1 (Comparative Relation Mining) Given a set of entities E and the as-

sociated corpus of comparative sentences S, find:

• For every sentence s ∈ S, its aspect a,
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• For every sentence s ∈ S about a pair of entities ei and ej , the comparative

direction (or comparison outcome), i.e., whether ei or ej is favored by s,

• For every entity ei ∈ E and every aspect a ∈ A, the rank score ria of the

entity.

4.2 Model

We discuss the modeling of features in comparative sentences, before describing

our CompareGem model.

4.2.1 Bag of Features

The convention in modeling text, either for classification [115] or topic modeling

[11], is to model a document as a bag of words, due to the assumption of exchange-

ability of words within a document. Only the frequencies of words, and not the

sequence, matter.

In our case, the unit of interest is a sentence. A bag-of-words model is not ap-

propriate for modeling a comparative sentence. Recognizing the favored entity in

a comparative sentence is challenging due to complex sentence structure, whereby

word order now becomes important. Let us consider the following comparative sen-

tence: “The 50D is sharper than my 40D”. In terms of the bag-of-words model, the

order between 50D and 40D could be swapped interchangeably. In fact, swapping

those two words would change the meaning of the comparison completely.

We observe that the entity position is important. We distinguish whether a word

appears before the first-mentioned entity, in between, or after the second-mentioned

entity. For example, the word “sharper” may translate to a feature 〈#1 sharper#2〉,

where #1 and #2 refer to first- and second-mentioned entities.

We model each comparative sentence s as a bag of features, where each fea-

ture w is drawn from a vocabulary of features W . The bag representation main-

tains the feature frequencies within each sentence. The complete representation
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for the considered comparative sentence follows: {〈the #1 #2〉, 〈#1 is #2〉,

〈#1 sharper #2〉, 〈#1 than #2〉, 〈#1 my #2〉}.

4.2.2 Generative Model

To help illustrate CompareGem in terms of feature generation, we may refer to

comparative sentences related to various aspects of digital cameras. Sentences s1−

s3 from Table 4.1 may be used for reference.

Generating Features We first observe that within a corpus, there are sentences

that belong to different aspects (e.g., image quality, functionality), and that fre-

quently each sentence focuses on one aspect. Hence, each sentence s is associated

with one of |A| aspects. This is done with the use of a categorical distribution

π over A. Furthermore, some features in a sentence provide information on back-

ground words or words that encode the relevant aspect (e.g., “surprised”, “images”,

“detailed”). We therefore introduce for each aspect a background distribution θba,

which defines a distribution over common features.

Yet other features are helpful in discovering the comparison outcome: whether

a sentence favors the first-mentioned entity (e.g., “sharper”, “more”) or the second

(e.g., “heavier”). We introduce two more feature distributions. θ�a is a distribu-

tion over features when the first-mentioned entity is favored, in which case features

involving words such as “better”, “sharper” have higher probabilities. θ≺a is the

same for when the second-mentioned entity is favored.

Every feature in a sentence is associated with binary variable ν indicating whether

the feature is drawn from the background distribution θba, or from one of θ�a or θ≺a.

Every ν is a sample of the Bernoulli distribution with parameter γ, which can be un-

derstood as the expected proportion of common features.

Comparison Outcome. Each sentence s expresses a comparison outcome in-

volving two entities (say ei and ej). Which of θ�a or θ≺a is used to draw the

comparative features in a sentence is indicated by a variable cs ∈ {≺,�}. The

event cs =� means the first-mentioned entity is favored, whereas cs =≺ means the

49



CHAPTER 4. MINING COMPARATIVE RELATIONS

second-mentioned entity is favored. For simplicity, we do not model a draw, which

would not influence the ranking between the two entities. We now can specify the

distribution over sentence feature, as follows:

P(w|θ, cs, as, νsw) =
(
P(w|θbas)

)I[νsw=0]

(
P(w|θ�as)

)I[νsw=1∧cs=�]
(
P(w|θ≺as)

)I[νsw=1∧cs=≺] (4.1)

where I[ · ], an indicator function, equals 1 when its condition is true, and 0 otherwise.

The outcome of cs depends on an underlying distribution. We associate each

entity ei ∈ E with a rank score ria that reflects the quality of ei with respect to

aspect a. Intuitively, the higher ria is than rja, the higher is the probability that a

comparative sentence favors ei. One suitable probability function is sigmoid, as in

(4.2), supposing the first-mentioned entity is ei and the second-mentioned entity is

ej .

P(cs = 0|ria, rja) = P(ei is better than ej |ria, rja)

= συ(ria − rja) =
1

1 + e−υ(ria−rja)
(4.2)

If ria is significantly higher than rja, the probability would tend towards 1, re-

flecting ei’s much higher quality. If ria = rja, the probability is 0.5, reflecting the

uncertain outcome between two evenly matched entities. Conversely, if ria is sig-

nificantly lower than rja, the probability would tend towards 0. The parameter υ

models the sensitivity to the difference between two rank scores. If υ is large, small

differences in scores would have a high impact on the probabilities.

Generative Process. CompareGem’s plate notation is shown in Figure 4.2, the

notation is explained in Table 4.3. First, the model assigns each sentence s ∈ S

to one of the |A| aspects. Once the aspect is assigned, two entities mentioned in

the sentence can compete along the comparison dimension specified by the aspect,

and we generate the comparison outcome (which entity is favored in s). Thereafter,
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γ

ν w |s|

a

c |S|

θb θ≻ θ≺ |A|

π

β

r |A|
|E|

τ

α

Figure 4.2: CompareGem in Plate Notation.

Notation Description
α feature-related Dirichlet distribution parameter
β aspect-related Dirichlet distribution parameter
γ Bernoulli distribution parameter
τ ranking score distribution parameters

θba background feature distribution for aspect a

θ�a, θ≺a
feature distributions for aspect a when the first-mentioned
and the second-mentioned entities are favored respectively

π topic proportion
w feature
as aspect of sentence s
cs comparative direction of sentence c
ria ranking score for entity ei with respect to aspect a
νsw background indicator for feature w in sentence s

Table 4.3: Notations.
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based on the comparison outcome, we generate each feature w ∈ s.

The full generative process is as follows:

1. For a given corpus, we sample π, an aspect proportion from the Dirichlet

distribution1:

π ∼ Dirichlet(β)

2. For every aspect, all θ�a, θ≺a and θba are sampled from the Dirichlet distribu-

tion with α prior:

θ�a, θ≺a, θba ∼ Dirichlet(α)

3. For each entity ei ∈ E and for each aspect a ∈ A, we sample rank score ria

from distribution F with some parameter set τ , we will discuss the form of

the distribution in Section 4.3:

ria ∼ F (τ)

4. For every sentence s ∈ S involving two entities ei (first-mentioned) and ej

(second-mentioned):

(a) Sample sentence aspect as:

as ∼ Categorical(π)

(b) Sample comparison outcome cs:

cs ∼ Bernoulli(συ(rias − rjas))

(c) Sample νsw for each feature w in s:

νsw ∼ Bernoulli(γ)

1For detailed information on the distributions used in this study: Dirichlet, Categorical, Bernoulli,
please refer to [7].
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(d) Sample each w in sentence s using appropriate feature distribution, see

(4.1):

w ∼ P(w|θ, cs, as, νsw)

As in Figure 4.2, the only observed (shaded) variables are the features w’s

within each sentence s. All others are latent. The likelihood function of an as-

signment of scores R = {ria}ei∈E,a∈A, comparison outcomes C = {cs}s∈S , aspects

A = {as}s∈S , latent distributions over features θ = {θ�a, θ≺a, θba}a∈A and aspects

π, and background indicators H = {νsw}s∈S,w∈s, is shown in (4.3).

L(π, θ,R,A,C,H|α, β, γ, τ) =

P(π|β)×
∏
s∈S

P(as|π)×
∏
a∈A

P(θba|α)P(θ�a|α)P(θ≺a|α)×

∏
a∈A

∏
ei∈E

P(ria|τ)×
∏

ei,ej∈E

∏
s∈Sij

P(cs|rias , rjas)×

∏
s∈S

∏
w∈s

P(νsw|γ)P(w|θ, cs, as, νsw) (4.3)

Once the model parameters are learned, we obtain the solution to the Problem 1

defined in Section 4.1.

We now illustrate how CompareGem captures the intuition of the integrated

approach with only one aspect. We use the same corpus as before (see Table 4.2).

The rank scores of entities are samples of some F (τ) distribution. A priori, we

assume no difference among the entities. When sentences d1 − d4 are given for

training, the scores of the entities should be shifted to satisfy the corpus observation:

e1 should be better than e2 (r1 > r2), e2 is better than e3 (r2 > r3), etc.

There are two interpretations for the test sentences. In one interpretation, we

infer the wrong meaning of sentences d5 and d6, so the second-mentioned entity

is considered better. This places e5 before e4 (r5 > r4) and e3 before e1 (r3 >

r1). However, the last placement makes this ranking less probable, since it is in

conflict with r1 > r2 > r3 according to training sentences d1 and d2. In the other
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interpretation, when d5 and d6 are correctly parsed, this contradiction is resolved.

As d5 is consistent with d1 and d2, the scores satisfying r1 > r2 > r3 > r4 > r5

give higher likelihood.

4.3 Inference

There are two options in modeling the rank score distribution. One is to model

it along a continuous spectrum, with a Gaussian prior for the distribution of ria’s,

which encode the prior belief that most entities are of “average” rank scores, while

some are very high or low. F can be a Gaussian specified by its mean and standard

deviation τ = (µ, σ). The mean is assumed to be zero. σ acts as a regularization

parameter.

Another option is to have a discretized model, with n ranking steps in the scale

of 0 to n− 1. The prior F (τ) can thus be simulated by a binomial distribution

Binomial(n − 1, p0), where p0 is the probability of success in a Bernoulli trial

(p0 = 0.5 for our model). This prior encodes the same information as a Gaussian,

shrinking the rank scores towards the mean.

Both approaches for rank score modeling are acceptable. The use of a partic-

ular model can come from the specific tasks and needs. Due to the difference in

mathematical formulations, these two models can take advantage of different opti-

mization methods. Variational method is employed to fit the model with continuous

rank scores. Gibbs sampling is used to maximize a posteriori distribution over the

hidden variables when discrete model is assumed.

4.3.1 Continuous Model via Variational Method

Variational approximation can be used to solve complex Bayesian models. To make

the posterior distribution tractable for computation, one can assume a family of

distributions over the hidden variable with its own parameters. The approximate

distributions are denoted q( · ). The lower bound optimization of the likelihood can
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be performed. For Bayesian model, the factorized form of a distribution stemming

from the mean field theory has been used with great success. We assume that every

hidden variable has its own distribution, which is independent from the others:

L(π, θ, R,A,C,H|α, β, γ, τ) ≈ q(R)q(π)∏
a∈A

q(θba)q(θ�a)q(θ≺a)×
∏
s∈S

q(cs)q(as)
∏
w∈s

q(νsw) (4.4)

Since the priors for the rank scores R are not conjugate, direct computation may

not be tractable. We assume a parametric form of q(R) = q(R|R̂):

q(R|R̂) =
∏
a∈A

q(Ra|R̂a) =
∏
a∈A

∏
ei∈E

I[ria=r̂ia] (4.5)

Ra = {ria}ei∈E denotes the set of aspect-specific rank scores. Though aspect-

specific factorization is not necessary, rank scores are assumed independent. This

factorization is employed for parameter optimization. An indicator probability func-

tion put the whole probability mass to the value specified by parameter set R̂.

Let Z be the set of the hidden variables. q(zi) denotes a probability density

function for variable zi. Once approximation distributions are specified, we can

run Variational Method to estimate {q(zi)}zi∈Z and optimize model parameters. To

find q(zi) that maximizes the lower bound given {q(zj)}zj 6=zi fixed, the following

equation has to be solved:

q(zi) =
1

L
eEzj 6=zi [lnL(Z)], whereL =

∫
eEzj 6=zi [lnL(Z)] dzi. (4.6)

We work with (4.6) in logarithmic form:

ln q(zi) = ln Ezj 6=zi [lnL(Z)]− lnL (4.7)

Taking into account the fact that constant lnL can be obtained through normaliza-
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tion, we can drop it in our notation. Instead of Equation 4.7 we write:

ln q(zi) ∼= ln Ezj 6=zi [lnL(Z)]. (4.8)

We iteratively estimate required distributions in a round robin manner. The up-

date procedures are shown below. ψ(x) denotes the digamma function. [s]1 is the

index of the first-mentioned entity in sentence s, [s]2 is the index of the second-

mentioned entity.

Estimating q(π).

ln q(π) ∼= ln
∏
a∈A

πβa−1
a , whereβa =

∑
s∈S

q(as = a) + β (4.9)

Estimating q(θba).

ln q(θba) ∼= ln
∏
w∈V

(θba)
αwba+1
w , where (4.10)

αwba =
∑
s∈S

∑
w′∈s

I[w′=w]q(νsw = 0)q(as = a) + α (4.11)

Estimating q(θ≺a) and q(θ�a).

ln q(θca) ∼= ln
∏
w∈V

(θca)
αwca+1
w , where (4.12)

αwca =
∑
s∈S

∑
w′∈s

I[w′=w]q(νsw = 1)q(as = a)q(cs = c) + α (4.13)

Estimating q(νws).

ln q(νws) ∼= ln P(νws|γ) + I[νws=0]

∑
a∈A

q(as = a)
(
ψ(αwba)− ψ(

∑
w∈V

αwba)
)
+

I[νws=1]

∑
c∈{≺,�}

∑
a∈A

q(as = a)
(
ψ(αwca)− ψ(

∑
w∈V

αwca)
)
, (4.14)
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Estimating q(as).

ln q(as) ∼= ψ(βas)− ψ(
∑
a∈A

βa) +
∑

c∈{≺,�}

q(cs = c) ln P(c|r̂[s]1as , r̂[s]2as)+

∑
w∈s

q(νsw = 0)
(
ψ(αwbas)− ψ(

∑
w∈V

αwbas)
)
+

∑
c∈{≺,�}

q(cs = c)
∑
w∈s

q(νsw = 1)
(
ψ(αwcas)− ψ(

∑
w∈V

αwcas)
)

(4.15)

Estimating q(cs).

ln q(cs) ∼=
∑
a∈A

q(as = a)
(

ln P(cs|r̂[s]1a, r̂[s]2a)+∑
w∈s

q(νsw = 1)
(
ψ(αwcsa)− ψ(

∑
w∈V

αwcsa)
))

(4.16)

Estimating q(R|R̂). To update R̂, we compute evidence lower bound F of the

log likelihood and maximize it via gradient ascent. The form of q(R|R̂) allows us

to update all the parameters at a time. The form of F makes it possible to update

the parameters independently for every aspect a ∈ A, i.e., R̂a. The lower bound

is computed up to an additive constant, which can be ignored for optimization pur-

poses:

F(R̂a) ∼=
∑
ei∈E

ln P(r̂ia|τ) +
∑
s∈S

q(as = a)
∑

c∈{≺,�}

q(cs = c) lnP(c|r̂[s]1a, r̂[s]2a) =

−
∑
ei∈E

r̂2
ia

2σ2
−
∑
s∈S

q(as = a)
∑

c∈{≺,�}

q(cs = c) ln
(
1 + e−υk(c)(r̂[s]1a−r̂[s]2a)

)
(4.17)

k(c) equals to 1, when c =�, and to −1 otherwise. The derivative w.r.t. r̂ia for

ei ∈ E and a ∈ A is:

F ′r̂ia(R̂a) = −
r̂ia
σ2

+
∑
s∈S

q(as = a)
∑

c∈{≺,�}

q(cs = c)

υk(c)

(
I[i=[s]1]

1 + e−υk(c)(r̂[s]2a−r̂ia)
−

I[i=[s]2]

1 + e−υk(c)(r̂ia−r̂[s]1a)

)
(4.18)

Equations (4.17) and (4.18) may seem similar to the Bradley-Terry-Luce model,
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but with significant differences due to the uncertainties for aspect and comparison

outcome, as well as a Gaussian prior on rank score.

The time required by each iteration scales linearly with the corpus size, O(|S|).

The gradient descent step requires O(ξ|S|), where ξ is the number of iteration until

convergence. ξ depends on the properties of an individual dataset and optimiza-

tion parameters, in practice the procedure converges fast, and ξ reduces from one

iteration to another.

4.3.2 Discrete Model via Gibbs Sampling

Gibbs sampling [52] provides a mechanism to infer hidden variables of a graphical

model. It is a special case of Monte Carlo algorithm that defines a Markov chain

in the space of possible variable assignments. We sample one variable at a time

from the conditional distribution of that variable, conditioned on all the others. The

stationary distribution of the Markov chain is the joint distribution over the vari-

ables and samples drawn in a such way are guaranteed from the joint distribution.

In comparison to variational approximation, Gibbs sampling does not impose any

constraint on the form of the distribution to be approximated. When the number

of samples is large, we can arrive at a good approximation of the true posterior

probability distribution over parameters.

We use the collapsed version of Gibbs sampling, by integrating out continuous
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variables θ≺a, θ�a, θba, and π. The derivation is provided below.

L(R,A,C,H|α, β, γ, τ) =∫
π

∫
θ

L(π, θ, R,A,C,H|α, β, γ, τ) dθ dπ =∫
π

∏
s∈S

P(as|π)× P(π|β) dπ×

∏
a∈A

∏
ei∈E

P(ria|τ)×
∏

ei,ej∈E

∏
s∈Sij

P(cs|rias , rjas)×

∏
s∈S

∏
w∈s

P(νsw|γ)×
∫
θ

∏
a∈A

P(θba|α)P(θ≺a|α)P(θ�a|α)×

∏
a∈A

∏
s∈S

∏
w∈s

((
P(w|θba)

)I[νsw=0]
(
P(w|θ�a)

)I[νsw=1∧cs=�]

(
P(w|θ≺a)

)I[νsw=1∧cs=≺]

)I[as=a]
dθ (4.19)

The integral for π is the Dirichlet-multinomial distribution over aspects. If K =

|A| and na denotes the number of sentences assigned to aspect a, we have:

∫
π

∏
s∈S

P(as|π)× P(π|β) dπ =
Γ(βK)

ΓK(β)

∏
a∈A Γ(na + β)

Γ(βK +
∑

a∈A na)
(4.20)

We separately integrate the all θ-expressions out. We can regroup factors as

follows:

∏
a∈A

∫
θba

P(θba|α)
∏
s∈S

∏
w∈s

(
P(w|θba)

)I[as=a∧νsw=0] dθba (4.21)∫
θ≺a

P(θ≺a|α)
∏
s∈S

∏
w∈s

(
P(w|θ≺a)

)I[as=a∧νsw=1∧cs=≺] dθ≺a (4.22)∫
θ�a

P(θ�a|α)
∏
s∈S

∏
w∈s

(
P(w|θ�a)

)I[as=a∧νsw=1∧cs=�] dθ�a (4.23)

The integral expressions in (4.21), (4.22), and (4.23) are Dirichlet-multinomial

distributions over features. Let n(w, ν, a, c) be the number of times feature w sam-

pled from the background distribution (ν = 0) or the comparative distributions

(ν = 1) occurs in a given corpus within a sentence assigned to aspect a with com-

59



CHAPTER 4. MINING COMPARATIVE RELATIONS

parison preference c. Assume that the corpus feature vocabulary is V , M = |V | is

the vocabulary size. We can rewrite, for instance, the integral in (4.23) for every

aspect a as follows:

Γ(αM)

ΓM(α)

∏
w∈V Γ

(
n(w, 1, a,�) + α

)
Γ
(
αM +

∑
w∈V n(w, 1, a,�)

) . (4.24)

Similarly with the integrals in (4.21) and (4.22).

P(ria|τ) and P(cs|rias , rjas) are defined below.

P
(
ria = r|τ = (n, p0)

)
=

(
n− 1

r

)
pr0(1− p0)(n−1)−r (4.25)

P(cs = c|ria, rja) =
(
1− συ(ria − rja)

)c(
συ(ria − rja)

)1−c (4.26)

We iteratively sample background indicator νsw for every feature w in each sen-

tence s ∈ S , comparison outcome cs and aspect as for each sentence, and rank

scores ria for each entity ei ∈ E and aspect a ∈ A.

Sampling Background Indicators H . We want to sample νsw for each word

w in sentence s ∈ S , keeping the rest variables fixed. Let H−sw be the set of

background indicator variables without νsw, then:

L(νsw|H−sw, R,A,C) ∝ P(νsw|γ)×(
I[νsw=0]

α + n̄(w, 0, as, ∗)
αM +

∑
w∈V n̄(w, 0, as, ∗)

+ I[νsw=1]
α + n̄(w, 1, as, cs)

αM +
∑

w∈V n̄(w, 1, as, cs)

)
.

(4.27)

We assume n(w, 0, a, ∗) = n(w, 0, a,≺) + n(w, 0, a,�). n̄(w, ν, a, c) is defined the

same way as n(w, ν, a, c), but without the count for feature position w in s.

Sampling Aspects A. The re-sampling of the aspect variable of sentence s

affects the feature distributions and entity rankings. A−s denotes the set of aspect
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variables excluding as.

L(as|A−s, R, C,H) ∝ (n̄as + β)P(cs|r[s]1as , r[s]2as)∏
w∈V

∏ls(w,0)
i=1

(
n̄(w, 0, as, ∗) + α + i− 1

)∏∑
w∈V ls(w,0)

i=1

(
αM +

∑
w∈V n̄(w, 0, as, ∗) + i− 1

)∏
w∈V

∏ls(w,1)
i=1

(
n̄(w, 1, as, cs) + α + i− 1

)∏∑
w∈V ls(w,1)

i=1

(
αM +

∑
w∈V n̄(w, 1, a, cs) + i− 1

) (4.28)

ls(w, ν) returns the count of feature w with background indicator ν in sentence s.

Sampling Comparison Outcomes C. We independently sample comparison

outcome cs for each sentence s ∈ S. C−s is the comparison outcome variable set

without cs

L(cs|C−s, R,A,H) ∝ P(cs|r[s]1as , r[s]2as)∏
w∈V

∏ls(w,1)
i=1

(
n̄(w, 1, as, cs) + α + i− 1

)∏∑
w∈V ls(w,1)

i=1

(
αM +

∑
w∈V n̄(w, 1, as, cs) + i− 1

) (4.29)

Sampling Rank Scores R. We sample rank score ria for each entity ei inde-

pendently from each other rather than simultaneously. This allows us dramatically

reduce computational complexity of the algorithm. In comparison to Gibbs sam-

pling, Variational method makes it possible to optimize rank scores simultaneously

(see Section 4.3.1). R−ia denotes the rank score variables excluding ria

L(ria|R−ia, A, C,H) ∝ P(ria|τ)
∏
s∈S

(
P(cs|r[s]1a, r[s]2a)

)I[[s]1=i∨[s]2=i] (4.30)

Gibbs Sampling with Simulated Annealing. Although Gibbs sampling allows

estimating the shape of a probability distribution, one can modify this process to

maximize the model likelihood. We used simulated annealing, the technique used

in optimization to find global optimum of a given (non-convex) function. We sample

each variable from the modified distribution:

P(zj = z|...)→ P(zj = z|...)1/tj∑
z P(zj = z|...)1/tj

, (4.31)
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where the sequence T = (tj)
n
j=1 defines the cooling schedule and particular value

tj is called the temperature. As tj → 0 the distribution becomes sharper (setting

tj = 1 for every j recovers standard Gibbs sampling procedure) and the modified

distribution concentrates all the mass on the maximal outcome.

A single iteration of the Gibbs sampler scales linearly with respect to the corpus

size, and takes O(|S|) time. Each sampling subroutine requires only one sentence

at a time. The rest of the parameters are considered fixed and bounded by some

constant. However, the number of aspects and score ranks, when large, can substan-

tially increase the computational time.

4.3.3 Discussion: Unsupervised vs. Supervised

Thus far, we have assumed unsupervised setting. We will explore both unsuper-

vised and supervised settings in Section 4.4. To introduce “light” supervision, we

label a subset of sentences in terms of their comparison outcomes and aspect as-

signments. Where in the unsupervised setting, only the w’s are observed, in the

supervised setting, we consider some cs and as variables (corresponding to a subset

of labeled sentences) to also be observed (having known outcomes). This has the

effect of grouping together sentences of the same label, which would then influence

the respective feature distributions θ�a, θ≺a, and θba.

An alternative is to consider the rank score ria of some entities to be observed.

This is too heavy-handed, and runs counter to learning the crowdsourced ranking

based on user-generated content.

4.4 Experiments

Our focus here is on effectiveness, rather than efficiency. All experiments were

conducted on a PC with Intel Core i5 CPU 3.3 GHz and 12GB of RAM.
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4.4.1 Datasets

The corpus of comparative sentences S can be obtained from user evaluation of

pairs of products. We crawled reviews from the Digital Camera and Cell Phone

categories of Amazon. The latter was augmented with data constructed by [169],

which in turn was based on corpus presented in [86]. We describe a methodology we

used for extracting comparative sentences from reviews. For practical purposes, off-

the-shelf approaches are available (e.g., [169, 76]). There are four key information

to determine: whether a sentence is comparative, the entities being compared, the

comparison direction, and the aspect of interest.

Comparative Sentence & Aspect Identification. Our scope covers sentences con-

taining two entities. For Digital Camera, we pick the four most frequent aspects:

functionality, form factor, image quality, and price. Cell Phone is represented by

the general aspect of overall quality, due to the lack of a meaningful volume of

comparative sentences for more specialized aspects. We take a random sample of

sentences and manually label them for comparative sentence identification and as-

pect identification, and train the respective classifiers. We apply these classifiers to

the remaining sentences, followed by manual inspection to remove false positives

to ensure a high quality of the dataset.

Entity Recognition & Linking. There is no ready-made named entity recognition

(NER) system for the domain we are considering. Therefore, we employ a dictio-

nary matching approach2 that works well in tying the mentions of an object together.

We construct the dictionary of entities from product titles, which we employ to per-

form token-based partial matching search. Then, sentences are manually reviewed.

This works well for cameras, but not for cell phones due to many generic references

(e.g., it, this phone, etc.). As co-reference resolution is manually time-consuming

and difficult to automate, we will use the Cell Phone dataset in a pseudo-synthetic

scenario replacing mentions with artificial entity tokens (see Section 4.4.3).

2The dictionaries are manually crafted from the Amazon and Epinions product pages correspond-
ing to the related domains.
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Domain/Aspect # sentences #1 is favored (%) #2 is favored (%)
DIGITAL CAMERA

Functionality 457 38.5 61.5
Form Factor 78 61.3 38.7
Image Quality 129 58.1 41.9
Price 165 52.1 47.9

CELL PHONE 544 67.1 32.9

Table 4.4: Dataset Statistics.

Aspect
Specification Crowdsourced

# entities # pairs # entities # pairs
Functionality 65 171 69 87
Form Factor 40 110 21 14
Image Quality - - 28 17
Price 34 103 37 27

Table 4.5: Ranking Benchmarks for Digital Camera Dataset.

Table 4.4 shows the dataset properties. The number of products being com-

pared for Digital Camera is 180. The four aspects respectively have 457, 78, 129,

and 165 comparative sentences. Cell Phone is represented by 544 sentences. The

distributions between the two classes (whether the first-mentioned (#1) or second-

mentioned (#2) entity is favored) are relatively well-balanced. These data sizes are

significant, in light of the need to carefully annotate the data, not just with labels,

but also with ranking benchmarks (see Section 4.4.1). These datasets are also larger

than that used in the previous work on entity ranking [91].

Entity Ranking Benchmarks

Because there is no definitive ranking ground truth, we use two benchmarks that

together provide a more complete picture. Their sizes are presented in Table 4.5.

Specification Benchmark. The intuition is that users’ preferences can be traced

to some specific attribute of the entities. We collect product specification informa-

tion from dpreview.com3 and wikipedia.com. For form factor, we say that entity

ei is better than ej if both the volume and weight of ei are smaller than those of

3Digital Photography Review has a large database with detailed information about individual
digital cameras.
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ej . For functionality, the entity with the later release date is better, assuming that

the newer model is more functional (comparison is only within product lines). To

ensure that the functionality has indeed changed, we only consider differences of

more than one year. For price, we consider the lower price to be better. To be

conservative against price fluctuations, we only consider differences of more than

1000USD. There are 291 entity pairs for functionality, 5836 pairs for form factor,

and 1479 pairs for price. After pruning the pairs whose ranking cannot be inferred

from data, it contains 171, 110, and 103 pairs from functionality, from factor and

price respectively. It is not defined for image quality and Cell Phone, for a lack of

corresponding knowledge base.

Crowdsourced Benchmark. This benchmark is created from the set of labels

used for comparative direction classification. For each pair of entities, we consider

each sentence to vote based on its label. The entity with the majority votes is con-

sidered better. This benchmark reflects how users in general rank these entities,

which may not always be consistent with the specifications. There are 175 entity

pairs for functionality, 53 pairs for form factor, 102 pairs for price, and 90 pairs for

image quality.

For an evaluation pair, we refer to the difference between the majority votes and

the minority votes as “support”. For greater confidence in the evaluation pairs, we

only include such pairs with support of at least two. This leave us 87, 14, 17, and 28

evaluation pairs for functionality, form factor, image quality, and price respectively.

The average support per entity pair is at least 2.5, and goes up to 3.9 for function-

ality, reducing the probability of choosing a comparison direction by chance. This

benchmark is smaller than the specification one because it is defined only for pairs

that have been explicitly compared within the data. However the variety of enti-

ties is comparable to the specification benchmark (see Table 4.5). We did not use

transitive extension for the benchmark generation.
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Evaluation Tasks and Metrics

We evaluate the performance of CompareGem along three dimensions, as follows.

Comparative Direction Classification. All the competing algorithms are given

a set of labeled (training) and a set of unlabeled (test) data. Each algorithm identifies

the favored entity for each comparative sentence in the test data. One can see this

essentially as a binary classification problem. To measure the performance of an

algorithm, we calculate its classification accuracy, i.e., the fraction of correctly

classified sentences (over the total number of sentences in the test set).

Entity Ranking. We also want to assess the quality of ranking scores produced

by the competing algorithms. It is not always feasible to have a ground truth in the

form of a rank list, because some pairs may not be comparable. We assume that

the ground truth (see Section 4.4.1) has the form of a set of entity pairs X , where

the favored (higher-ranked) entity for each pair in X is known. We transform the

output ranking scores into a set of ordered pairs Y , which we compare in terms of

its agreement with the ground truth X .

As metric, ranking accuracy is the agreement between the ground truth X and

the output Y in terms of the fraction of concordant pairs over all pairs in the intersec-

tion, expressed as a percentage. It is closely related to Kendall’s tau [43]. Whereas

Kendall’s tau is defined for the totally ordered sets, the proposed metric accepts

partially ordered sets, and, thus is more suitable here, as comparison makes sense

only for comparable entities. Two entities are comparable if there is at least one

comparative sentence of aspect a involving them. Comparability is also transitive.

Aspect Identification. We first investigate the previous two primary tasks in the

scenario where individual aspects are known. As CompareGem’s flexibility allows

for latent aspects, we then investigate the second scenario where aspects are pooled

and latent, and assess the aspect identification using balanced F-measure. This gives

a better assessment, as the aspect distribution in the dataset is very skewed, and

simple majority vote alone already attains 55% accuracy.
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4.4.2 Parameter Setting

CompareGem involves a number of hyperparameters. To tune them, we perform

two-step grid search. The first step optimizes the parameters (α, β, γ) when the

ranking component is switched off (υ = 0). Once these hyperparameters are fixed,

the ranking-related parameters (υ, σ, n) are optimized in the second step.

The number of comparative features (e.g., “more”, “better”) in a sentence is

usually fewer than the number of the background words (e.g., emph“tried”, “ac-

tually”, “’pixel”). This suggests a reasonable set of possible values for γ, which

should lie within (0.5, 1). We use the same non-informative hyperparameters for

the feature distributions over all aspects.

For the grid search, the measures (e.g., accuracy, ranking accuracy) were com-

bined into the harmonic mean, H(M) = k/
(∑k

i=1m
−1
i

)
, where M = {mi}ki=1 are

the appropriate evaluation measures.

The Gibbs sampling algorithm uses simulated annealing and requires specifi-

cation of initial temperature and cooling schedule. We analyzed the exponential

cooling and linear cooling schedules. The linear schedule managed to produce bet-

ter result for the same fixed number of iteration and was adopted. The number of

optimization steps were set to 250 for Variational Approximation and 500 for Gibbs

sampling. Increases did not show substantial improvement.

4.4.3 Supervised Evaluation

The aim is to understand how well CompareGem tackles the classification and rank-

ing tasks in the presence of training data. We lemmatize words before turning them

into features. Rare features are discarded. We show results for the 50:50 training

and test data splits. Similar results are observed on the 40:60 and 60:40 data splits,

but are not discussed here due to space consideration. We repeat every run 10 times

on different data shuffles, and report the averages. We conduct randomization test

[12] at 5% statistical significance level for the differences between methods. The
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best result among methods is in bold. * indicates the presence of a significant dif-

ference between the best and second best methods. Lower results with statistically

insignificant differences are shown in italics.

Evaluation on Individual Aspects

First, in this section, we focus on the evaluation of the two primary tasks of compar-

ative direction classification and entity ranking to study their synergy. Therefore,

we fully supervise the aspect assignment, and run these experiments on each aspect

separately.

Methods. At the sentence level, the aim is to determine which entity being men-

tioned is better. For this classification task, we compare to two popular classifiers:

Support Vector Machine (SVM) [30] and Naive Bayes (NB) [115] as implemented in

Weka [59]. We used SVM with linear kernel, and tuned the regularization parame-

ter C via grid search, C ∈ {10−1, 100, ..., 103}. For the ranking task, our baseline is

Bradley-Terry-Luce model (BTL). Because BTL assumes the comparison outcomes

of sentences are known, we use the classification output from the first task, together

with the training sentences as inputs to the ranking model. For this reason, BTL is

not a complete baseline, because it cannot operate independently from a source of

comparative directions. For ranking, we create a composite baseline from pipelining

the two steps discussed in this section (i.e., SVM+BTL).

In contrast to the baseline, as CompareGem is a generative model, we simply

learn the two tasks simultaneously. There are two versions of CompareGem: with

Continuous rank scores learnt via Variational Method, and Discrete rank scores

learnt via Gibbs Sampling.

Comparative Direction Classification. We first validate the hypothesis that

joint modeling improves the comparative direction classification. Table 4.6 shows

results for the different configurations of CompareGem, continuous and discrete,

with or without modeling the entity ranking. The ranking component is put out by

setting the sigmoid scaling parameter to zero (υ = 0) in (4.2). The versions of

68



CHAPTER 4. MINING COMPARATIVE RELATIONS

Continuous Discrete

Aspect With Ranking
Without
Ranking

With Ranking
Without
Ranking

Functionality 85.0∗ 74.2 83.1 65.5
Form Factor 74.5∗ 62.5 70.0 55.5
Image Quality 76.7 76.3 62.5 61.1
Price 68.6 60.5 68.9 57.1
Overall 75.7 67.7 70.3 59.6

Table 4.6: Supervised: CompareGem Comparative Direction Classification.

Aspect
CompareGem
(Continuous) SVM NB

Functionality 85.0∗ 79.3 74.7
Form Factor 74.5∗ 66.8 62.5
Image Quality 76.7∗ 71.6 69.8
Price 68.6∗ 60.9 60.1
Overall 75.7 69.0 66.2

Table 4.7: Supervised: Comparative Direction Classification

CompareGem that take advantage of the entity ranking information perform better

than their non-ranking counterparts. The Overall row4, derived as the harmonic

mean across the four aspects, indicates that CompareGem (Continuous) performs

substantially better that its competitors, thus we use it latter to compare with the

baseline methods.

Table 4.7 reports the accuracy results of the baseline methods. For all four

aspects, the best performing method is Continuous CompareGem. The baselines,

SVM and NB, perform worse (statistically significant).

This outperformance validates our hypothesis that jointly modeling ranking and

classification helps the model do better at classifying sentences.

Between the two baselines, SVM is noticeably better than NB. It also has better

results than non-ranking versions of CompareGem (Table 4.6). We keep SVM as

the primary baseline in subsequent experiments.

Entity Ranking. For ranking, we rely on two benchmarks. Table 4.8 shows the

ranking accuracies for the crowdsourced benchmark. CompareGem (Continuous)

4Overall, as harmonic mean, does not lend itself to randomization test for significance, and thus
does not admit the * indicator.
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Aspect
CompareGem
(Continuous)

CompareGem
(Discrete) SVM+BTL

Functionality 94.9∗ 89.7 93.8
Form Factor 94.3 92.9 90.7
Image Quality 94.1∗ 90.0 89.4
Price 89.6 88.1 86.7
Overall 93.1 90.1 90.0

Table 4.8: Supervised: Entity Ranking (Crowdsourced).

Aspect
CompareGem
(Continuous)

CompareGem
(Discrete) SVM+BTL

Functionality 75.8 76.6 80.1∗
Form Factor 58.7∗ 53.4 51.0
Price 75.8 75.4 70.0
Overall 69.0 66.6 64.6

Table 4.9: Supervised: Entity Ranking (Specification).

has the highest ranking accuracies. Though CompareGem outperforms SVM+BTL

significantly, the magnitude of the difference is less impressive than for classifi-

cation task. We hypothesize that ranking is an “easier” task than classification.

Though SVM performs significantly worse in classification at the sentence level

(Table 4.7), at the level of entity pairs, there could still be sufficient number of

correctly classified sentences to get the ranking right.

Table 4.9 shows the ranking accuracies for the specification benchmark. Against

this benchmark, CompareGem still performs well for form factor and price. For

functionality, it is worse than SVM+BTL.

Though the absolute numbers are different, the main conclusions that can be

derived from the two benchmarks are similar. Indeed, the evaluation pairs that exist

in both benchmarks are quite consistent. Only one disagreement is indicated within

functionality between them. The difference in the results can be explained in part

by the difference in benchmark sizes (see Table 4.5). The specification benchmark

imposes more constraints on the entity placement within a ranking, making it more

‘difficult’ for the methods.

For these datasets, between the two versions of CompareGem, Continuous is
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noticeably better across Tables 4.6 to 4.9. Subsequently, we report the results of

CompareGem (Continuous) as a representative.

Evaluation on Combined Aspects

In this section, we pull all aspects together, and explore the scenario when only par-

tial supervision on aspect assignment is available. The aim here is to understand

how well CompareGem tackles the major tasks of comparative direction classifica-

tion and entity ranking, while also pursuing aspect identification.

The natural baseline is to use a pipeline of classifiers and ranking model. The

first classifier is trained to identify the aspect of a sentence. The second one is

to identify the comparative direction. The third model is to build entity ranking

for every aspect based on the classification outcomes. We report the results for a

SVM+BTL pipeline, i.e., SVM classifiers for aspect and comparative direction and

BTL model for ranking.

Table 4.10 summarizes the evaluation results of CompareGem (Continuous) vs.

the SVM+BTL pipeline on the Digital Camera dataset. Because we are dealing with

a single pool, we show “overall” figures derived as harmonic mean across results

for individual aspects. For ranking, we use the crowdsourced ranking benchmark,

which is applicable to all four aspects. Evidently, CompareGem still outperforms

the baseline on the two primary tasks of comparative direction classification and

entity ranking. This is despite a marginally lower performance in aspect identifica-

tion, which is still sufficiently accurate to support the primary tasks. This speaks

of the flexibility of CompareGem, in its higher capacity for comparative direction

classification and entity ranking, in both scenarios of operating with known aspects

or with partial information on aspects.

Effect of Sentence Density

To better understand CompareGem, we conduct further analysis to investigate the

effect of the density of entities in a corpus. The density here is defined as the ex-
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Measure
CompareGem
(Continuous)

SVM+BTL

Comparative Direction Classification 68.2 67.4
Entity Ranking 91.4 89.8
Aspect Identification 68.4 69.0

Table 4.10: Supervised: Combined Aspects.
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Figure 4.3: Classification and Ranking Accuracies Against Density.

pected number of sentences per comparable pair of entities. The working hypothesis

is that CompareGem produces better quality output for denser corpora.

Data. This experiment requires fitting the model on several corpora of similar

contents, but with varying density. It is infeasible to find such corpora naturally, and

therefore we rely on a pseudo-synthetic scenario. Starting with an original corpus,

suppose that we need to come up with another corpus of comparative sentences

involving a desired number of n entities. Given a corpus of comparative sentences

S, we replace the original entity tokens within these sentences with artificial entity

tokens from a predefined set En = {ei}ni=1. As synthetic ground truth, we set

the entity rank scores beforehand. For each sentence in S, we randomly pick two

entities form En and place them in the sentence in the order consistent with the

comparative outcome based on the rank scores.

The density of a corpus S is defined as:

density(S) = |S|
(
n

2

)−1

. (4.32)
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Figure 4.3 tracks how the performance of CompareGem and the baselines on

comparative direction classification and entity ranking (y-axis) varies with the den-

sity (upper x-axis) or the number of entities (lower x-axis) in the corpus. For the

pseudo-synthetic datasets, we use two original corpora, namely: the functionality

aspect of the Digital Camera dataset and the Cell Phone dataset. For both datasets,

the results are consistent.

The higher the density, the higher is the ranking accuracy performance of both

CompareGem and the SVM+BTL baseline. This is expected as the more compar-

ative sentences we have for each a pair of entities, the easier and the more robust

it is to determine the ranking of entities. Importantly, though the trend is simi-

lar, CompareGem’s ranking accuracy (green line) is consistently higher than that of

SVM+BTL (cyan line).

Interestingly, increasing ranking accuracy with density lifts CompareGem’s per-

formance in comparative direction classification (navy blue line) correspondingly.

In contrast, the baseline SVM has a flat accuracy (red line), unaffected by the rank-

ing accuracy due to its pipeline design. Even at low densities (around 0.02 onwards

for Digital Camera, and 0.5 for Cell Phone), CompareGem outperforms SVM.

Notably, the ranking accuracy of CompareGem is always better than the ranking

accuracy of the baseline even if the classification accuracy drops. This may be

the effect of model regularization and the probabilistic nature of the comparison

outcomes. Uncertain predictions should not affect the ranking of the corresponding

entities much, while the pipeline setting does not deal with these situations. That

joint modeling outperforms the pipeline setting validates our original motivation for

developing a joint model to solve both problems simultaneously.

4.4.4 Unsupervised Evaluation

CompareGem can also run in unsupervised setting, when no labeled data is used as

input. The goal is to explore how suitable CompareGem is for modeling a corpus of

comparative sentences. If a model can find a good fit to a dataset even without any
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Measure
CompareGem
(Continuous) NB-EM+BTL Majority

Purity 62.4∗ 52.9 53.6
Ranking Accuracy 64.7∗ 57.0 47.7
Overall 63.5 54.8 50.4

Table 4.11: Unsupervised: Purity and Ranking Accuracy.

labels, arguably it encodes some essential parts of the corpus. In this experiment,

we observe the aspect labels, and the task becomes a binary clustering problem, i.e.,

finding comparison clusters for each aspect. The entire corpus is observable, not

only individual aspects.

As a baseline clustering, we use Naive Bayes with an Expectation Maximiza-

tion algorithm (NB-EM) [131]. This choice is supported by the argument that

CompareGem reduces to a variation of Naive Bayes when the ranking component

is dropped. The baseline clusters comparison outcomes for each aspect separately.

We also include a Majority baseline, which simply puts all the available sentences

into one cluster.

We can still use the labels to evaluate this clustering. We measure the compar-

ison outcome identification quality via purity. To compute purity, each cluster is

assigned to a class that is most represented within the cluster. Once the clusters are

mapped to the labels, we measure the accuracy of the assignment. A low quality

clustering has low purity, while a perfect clustering has the purity of 1. The ranking

accuracy is calculated for each possible mapping of the obtained clusters, and the

maximum value is reported.

Table 4.11 shows the results of this experiment. Comparing the results of su-

pervised vs. unsupervised configurations, we see that the unsupervised results are

indeed lower, as expected. Interestingly, the comparison outcome clustering purity

is still relatively good and significantly better that the baselines. This supports our

intuition that the CompareGem captures properties of comparative sentence corpora.
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θ�: #1 is favored θ≺: #2 is favored θb: background
#1 from #2 from #1 #2 #1 model #2
#1 improvement #2 #1 #2 improvement amateur #1 #2
recommend #1 #2 #1 recommend #2 nikon #1 #2
#1 much #2 much #1 #2 hobbyist #1 #2
pleased #1 #2 #1 #2 blow old #1 #2

Table 4.12: Supervised: Top Features in Functionality.

4.4.5 Feature Analysis

To gain further insight into the workings of CompareGem, here we investigate the

features that play an important role in the supervised settings. Since there are two

comparison outcomes (c =� indicating the first-mentioned entity #1 in a sentence is

favored, as well as c =≺ indicating the second-mentioned entity #2 is favored), we

focus on features that are most discriminative between the two classes. In the same

way, we report the top discriminative features among the aspects. A discriminative

feature w is one that yields top conditional probabilities P(c|w).

The feature distributions of CompareGem are somewhat related to “topics” in

topic modeling [11]. In our case, the “topics” correspond to the comparison out-

comes (and not an arbitrary number of topics), the distribution is over features (and

not over words), and the primary mechanism for learning is the comparison model

in addition to feature co-occurrences (and not word co-occurrences alone as in topic

modeling).

In Tables 4.12 and 4.13, we show the top features satisfying the discriminative

condition for functionality and image quality respectively. The first two columns

report features relate to comparison outcomes, while the last column shows aspect-

related features. For each feature, #1 and #2 refer to the relative positions of the first-

and second-mentioned entities, with respect to a word. The relative word positions

are important in discriminating comparison outcome. For functionality, the features

“#1 improvement #2” and “#1 #2 improvement” relate to the different classes. The

background features can give a clue about the aspect. For example, image quality

emphasizes background words such as “image”, “pic”, “capture”.
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θ�: #1 is favored θ≺: #2 is favored θb: background
#1 give #2 #1 #2 give #1 image #2
#1 sharper #2 #1 #2 accurate #1 pic #2
#1 significantly #2 #1 #2 photo #1 capture #2
#1 detail #2 #1 #2 perform shooting #1 #2
#1 upgrade #2 #1 #2 upgrade noise #1 #2

Table 4.13: Supervised: Top Features in Image Quality.

4.5 Discussion

Since more and more users have become accustomed to consulting online reviews,

some merchants driven by greater commercial benefits write fake reviews to pro-

mote their products. The reviews and opinions deliberately created to mislead con-

sumers are known as deceptive opinion spam [58]. The deceptive spam can be used

to undeservingly promote or demote target entities, which, in turn, may mislead

CompareGem, if spam reviews contain fake comparisons. The investigation in this

chapter is done under assumption and holds when we work with clean data, free

of deceptive opinion spam. To satisfy this assumption, one may filter spam from

reviews, using methods and models proposed in the related studies [78, 155, 129].

CompareGem shares similar sigmoid-based probability as Bradley-Terry-Luce

(BTL) model, which is a form of aggregation model [153, 40, 63]. For the de-

tailed discussion of aggregation models, see Section 2.2.1. In the problem settings,

the comparison outcomes being aggregated are latent and unknown and need to be

learned from text. Due to synergy between aggregation modeling and generative

modeling of text, CompareGem achieves better performance than its pipeline com-

petitors.

Being empirically successful, however, at the entity pair level, our proposed

model assumes a homogeneous expression of preferences. Users may express dif-

ferent preferences depending on their requirements, consider a laptop purchase: a

gamer would look for a high performing laptop, whereas a businessman would look

for something more ergonomic and light at the expense of computing power. This
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difference in preferences has to be captured to provide more realistic analysis of

user preferences. In Chapter 5, we explore the problem of preference mining in

details.
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CHAPTER 5

DISCOVERING PREFERENCE GROUPS

Learning to rank is a machine learning approach to rank objects based on their

features [20]. It has found applications in many areas. In information retrieval

[105], we would like to know which search result is more relevant to a query, and

thus should be ranked higher. In recommender system [160, 109], it is important to

determine which item is preferred by a user, and thus should be recommended to

the user. Several natural language processing tasks may also involve ranking, such

as text summarization [120] or keyphrase extraction [75].

The key idea behind learning to rank is to learn a ranking function that maps

feature vectors to rank scores or rank orders. This function is learned from data

consisting of rankings or ranked list of objects. An implicit assumption in many

scenarios is that these rankings come from a homogeneous population. In other

words, there is one way to rank objects based on their features, which is represented

by a central ranking function. This assumption of a central ranking function may

very well be applicable to some scenarios, such as homepage finding or named page

finding, where most users would practically agree on the rankings.

Problem Yet there are other scenarios where there may be more than one way

to rank objects based on their features. In this chapter, we consider the problem

of modeling rankings for a heterogeneous population. In such a population, there

may be several sub-populations that rank objects differently. We call such sub-

populations “preference groups”. For instance, when shopping for cameras, con-
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sumers may have diverse preferences with respect to the attributes of a camera, and

therefore varied ways for ranking cameras. Professionals may rank DSLRs highly

for its customizability, while casual users may prefer point-and-shoot cameras for

its portability. In a voting electorate [54, 53], there may be several preference groups

that rank electoral candidates differently based on where they stand on issues. Thus

a single ranking function would not be able to represent diverse preference groups

in a heterogeneous population.

If only these preference groups were identifiable or known in advance, then the

problem would devolve into employing learning to rank separately within each pref-

erence group independently. On the contrary, in many cases we merely observe the

diverse rankings within a population. Discovering the preference groups is inher-

ently part of the problem.

The problem can thus be informally stated as follows. Given a set of objects and

their feature vectors, as well as a set of ranked lists defined over these objects, we

seek to learn K latent preference groups and correspondingly K ranking functions,

one for each preference group. The population of ranked lists is heterogeneous, i.e.,

there may be different permutations of the same set of objects in the data.

Approach One way to think about the problem is to consider it as an amal-

gamation of two requisite components: discovering the preference groups, and em-

ploying learning to rank within each group.

To discover the preference groups, it is not appropriate to employ clustering

in the feature space. The reason is that heterogeneity in our context concerns the

variance in rankings over objects with similar features. Therefore, it is more relevant

to consider clustering in the ranking space. For this, we turn to mixture models for

ranking distributions.

While there are several models for estimating the distribution over rankings

[111], as reviewed in Section 5.5, we build on the Plackett-Luce model [141, 106],

which is widely applicable and lends itself to maximum likelihood estimation. It is

based on Luce’s Choice Axiom [107], which states that the probability of choosing
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one item over another is not affected by the presence or absence of other items in the

pool. This axiom is frequently cited in economics for modeling consumer behavior

when choosing one product over another [9]. Plackett-Luce model is characterized

by a set of item-specific parameters, as described in Section 5.2. In this case, each

preference group is associated with a set of Plackett-Luce parameters. The K pref-

erence groups could therefore be modeled as a mixture of K Plackett-Luce models

[54, 53].

One limitation of a ranking model such as Plackett-Luce is that it is defined

over a finite set of objects. Therefore, it does not generalize well to items not seen,

or rarely seen, in the training data. This is where the learning to rank component

comes in. Instead of learning item-specific parameters in each preference group

(defined over items), we seek to learn a ranking function defined over features.

There are at least two advantages to this modeling. For one, we would obtain better

generalization from greater applicability to unseen items with similar features. For

another, we would obtain better interpretability, as it may allow inspection of which

features are important to each preference group.

While it is possible to think of the two components identified above as a pipeline,

and we will explore this as well in the experiments, it is much more natural to

consider them as two inherent components of a unified joint model. For one thing,

the two components are mutually beneficial. Better clustering leads to better ranking

functions due to more accurate reflection of preferences. Meanwhile, better ranking

functions lead to better clustering, allowing better alignment of each ranked list

to the closest preference group. Moreover, in a joint model, there is no need for

two sets of parameters, one for clustering and another for learning to rank, and the

parameters can be unified.

This chapter is structured as follows. We define the problem of heterogeneous

ranking populations in Section 5.1. In Section 5.2 we introduce Plackett-Luce Re-

gression Mixture or PLRM, probabilistic graphical model that discovers latent pref-

erence groups and their corresponding ranking functions. In Section 5.3, we de-
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scribe its inference algorithm based on Expectation-Maximization. In Section 5.4,

through comprehensive experiments on several public datasets with varying hetero-

geneity, we show the effectiveness of the joint PLRM model vis-á-vis a pipeline

model, as well as learning to rank models designed for homogeneous populations.

Section 5.5 concludes the chapter with a discussion.

5.1 Problem

We consider a set of M items of the same type. For instance, in the context of

consumer choice, these may be products of a given category, e.g., digital cameras.

For multimedia retrieval, these may be images to be ranked.

An item i is associated with a feature vector xi in the D-dimensional space,

xi ∈ RD. For instance, cameras may have features such as sensor size, the presence

of flash, weight and physical dimensions, etc. For images, the features may be gist

descriptors and color histograms [136]. The collection of feature vectors of various

entities is denoted X = {xi}Mi=1. For ease of reference, we list our notations in

Table 5.1.

In addition toX , we are also givenN ranked listsR = {r(n)}Nn=1, corresponding

to N “judges”. A judge n may rank a subset of items denoted X̄n ⊆ X . The

corresponding ranking induced on X̄n in the form of a permutation, without ties, is

denoted r(n). When item i (with feature vector xi) is placed in position j among

items in X̄n, we have r(n)
i = j. Position j = 1 is the highest, followed by position

2, etc. Equivalently, we write r(n)[j] = i.

We further assume that these judges can be clustered into K preference groups.

Each group is relatively homogeneous, whereby the ranking behaviors of judges

within a group do not vary too much. In contrast, ranking behaviors across groups

are heterogeneous. Two individual judges from different groups are likely to have

different rankings r(n) 6= r(n′) over the same set of items X̄n = X̄n′ . These prefer-

ence groups are latent, and need to be discovered from the data.
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Problem Statement Our problem can thus be stated as follows. Given the

feature vectorsX and the ranked listsR, as well as an integerK, we seek to identify:

• K latent preference groups among the N judges in R,

• a ranking function within each latent preference group.

5.2 Model

In this section, we discuss the formal definition of the proposed Plackett-Luce Re-

gression Mixture (PLRM) model. The plate representation of PLRM is shown in

Figure 5.1.

Overview PLRM is a probabilistic graphical model for representing different

latent preference groups within a population of judges. Each judge arranges a given

set of items into a ranked list (a permutation) based on the features of the item. In the

conventional Plackett-Luce model, the ranking is based on item-specific parameters,

which may connote for item quality. In contrast PLRM assumes that the ranking is

based on a ranking function on item features.

We further assume that K groups exist within the population, and each group

is associated with a ranking function. Each judge’s ranking is based on the ranking

function of the group it belongs to, while still allowing for some variance among

group members. Accounting for this variance is best done through probabilistic

modeling.

To generate the observed ranked lists R, we consider N experiments as follows.

At each random trial, we ask a new judge to select a group. The group is chosen

stochastically with a categorical variable zn ∈ {1, 2, ..., K} indicating the choice.

We then ask the judge to rank a subset of items, defined by their feature vectors

X̄n. The judge relies on the group’s ranking parameter wzn ∈ Rd. This parameter

is a vector in D-dimensional space, so that each component of wzn corresponds to

a particular feature of xi ∈ X̄n.

To produce the ranking r(n) over items in X̄n, the judge may apply the group
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Notation Description
i index of an item

M total number of items
d index of a feature
D number of item features
xi feature vector of an item i
X collection of items/feature vectors
n index of a judge or a ranked list
N total number of judges
X̄n subset of items ranked by judge n
r(n) permutation over X̄n given by judge n
ri position of item i in the ranked list r

r[j] index of the item occupying position j in r
R collection of ranked lists by N judges
K number of preference groups
k index of a preference group
wk preference vector for group k
W collection of preference vectors
vi ranking parameter for item i, equivalent to exp

(
xiw

T
)

for PLRM
V collection of ranking parameters
π mixture proportion among preference groups
zn group assignment for judge n
Z collection of group assignments

Table 5.1: Notations.

parameter wzk via regression over the items in X̄n, i.e., Y = X̄nwzn
T . Relying on

exact regression values may be unrealistic, given the likely variance among group

members. Therefore, to account for the trial uncertainties and ranking deviation

among the group members, the regression values serve as conditional parameters to

a ranking probability model, as described in the following.

Ranking Probability Model We first describe a ranking model based on the

basic Plackett-Luce, after which we introduce the regression-based Plackett-Luce

in PLRM.

Let r be a ranking of M items, i.e., permutation of M indices. Plackett-Luce

(PL) model defines a probability distribution over all possible rankings of M items.
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It is expressed in terms of item-specific parameters V = {vi}Mi=1; vi ≥ 0.

PL(r|V ) =
M∏
j=1

pj(r|V ), (5.1)

where

pj(r|V ) =
vr[j]

vr[j] + vr[j+1] + · · ·+ vr[M ]

=
vr[j]∑M
l=j vr[l]

. (5.2)

The probability distribution yields an intuitive interpretation in the form of a

ranking procedure. A judge generates a ranked list from the first position to the last

position. p1(r|V ) indicates the probability of placing an item r[1] = i, parameter-

ized by vi, in the first place. Having selected the item to occupy the first position,

we repeat this procedure with the subsequent positions. p2(r|V ) is the probability

of placing another element r[2] = i′, parameterized by vi′ in the second place, and

so on. This procedure continues for all the items within a ranked list r. The joint

probability of this process for a ranked list r is presented in Eq. 5.1.

The PL model defined above has a couple of important properties. The first

one is the intuitive property that an item i is more likely to be placed higher than

another item i′, if vi > vi′ . The second property flows from the afore-mentioned

Luce’s Choice Axiom. Items that have already been placed into r would not in-

fluence the choice probability of the remaining items. This property, also known

as “independence from irrelevant alternatives” [107], allows ranked lists of varying

sizes to be induced for subsets of items.

One limitation of the conventional PL model, in the context of learning to rank,

is the reliance on the item-specific parameter vi. This requires all items not just to

have been seen, but also to have had sufficient representation in the training data.

To address this limitation, we therefore seek to bring the ranking parameter into the

feature space of items. This is accomplished by expressing the parameter vi in terms

of a regression of the feature vector xi with weight parameter or “preference vector”

w, as expressed in Eq. 5.3. In this work, we use the exponential transformation to

satisfy non-negativity constraint. In practice, there could be other possible choices
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such as sigmoid.

vi = exp
(
xiw

T
)

(5.3)

We call this approach Plackett-Luce Regression or PLR. However, because of

the heterogeneity of the population, there may not be only a single preference vector

w for all ranked lists. Instead, we postulate that there are K sub-populations, or

preference groups, each of which is associated with its own preference vector. This

gives rise to a mixture of PLR models, which we term the Plackett-Luce Regression

Mixture or PLRM, as described in the following.

Generative Process The PLRM model can effectively be described by the

following generative process.

1. π, a K-dimensional mixture proportion, is sampled from Dirichlet distribu-

tion with symmetric prior α:

π ∼ Dirichlet(α)

2. For each of theK preference groups, its preference vectorwk is sampled from

a D-dimensional Gaussian with zero mean and σ2 variance:

wk ∼ N (0, σ2)

3. For each ranked list r(n) defined over the subset of items X̄n ⊂ X , where

n = 1, . . . , N :

(a) Select a preference group zn from a choice ofK groups according to the

mixture proportion π:

zn ∼ Categorical(π)

(b) Sample a ranking r(n) from the Plackett-Luce model parameterized by
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x M r z N

w
K

π

σ2 α

Figure 5.1: Plackett-Luce Regression Mixture Model in Plate Notation.

the regressed values over the set of feature vectors in X̄n:

r(n) ∼ PL
(
exp

(
X̄nwzk

T
))

The likelihood of this generative process is as follows:

L(R,Z,W, π|X) = P(π|α)×
K∏
k=1

P(wk|0, σ2)×

N∏
n=1

P(zn|π)PL
(
r(n)| exp

(
X̄nwzn

T
))
, (5.4)

where R = {r(n)}Nn=1 are the set of ranked lists, Z = {zi}Nn=1 are the corresponding

group assignments for each ranked list, and W = {wk}Kk=1 are the groups’ prefer-

ence vectors.

Discussion The above generative process defines the probabilistic generative

model that we call PLRM, with a mixture modeling component representing the la-

tent preference groups as well as a regression component representing the learning

to rank based on features. This represents the joint modeling approach. With ap-

propriate settings, we can decouple the two components, yielding simpler models.

First, we can turn the model into a purely clustering model based on rankings,

without features. In this case, an item i is represented by a feature vector xi, whose

dimensionality is the same as the number of items M . Rather than representing
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features, xi becomes a one-hot “identity” vector, with a value of 1 in the i-th di-

mension, and 0 in all other dimensions. Effectively, the regression xiwT yields an

item-specific ranking parameter, just as in the original PL model. Given that this

results in a mixture of K Plackett-Luce models, we call this Plackett-Luce Mix-

ture or PLM, which is capable of clustering but not ranking by features. Later, we

will compare PLRM to PLM, to verify that regression on the features does help the

clustering function.

Second, we can turn the model into a purely learning to rank model, by simply

setting K = 1. In this case, there is no mixture. There is only a single regression

model, embedded within a probabilistic ranking model. We thus call this Plackett-

Luce Regression or PLR, which is capable of learning to rank, but not clustering.

Later, we will compare PLRM to PLR, to verify that modeling a mixture does help

for a heterogeneous ranking population.

Third, the above two simpler models essentially decouple the two components

that are joined together by PLRM. Therefore, they could be employed in a disjoint

pipeline. This pipeline of PLM+PLR would first cluster the ranked lists in the pop-

ulationR intoK preference groups using PLM, without the help of features. There-

after, we run PLR within each preference group to learn a ranking function based on

features. Later, we will compare PLRM to PLM+PLR to see how the joint approach

compares in the effectiveness of both the clustering and ranking objectives.

5.3 Inference

In this section, we derive an Expectation-Maximization (EM) algorithm for fitting

the Plackett-Luce Regression Mixture (PLRM) model parameters, as well as discuss

how the model could be used for ranking prediction.
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5.3.1 Optimization

EM is an iterative algorithm that is commonly used for finding maximum likeli-

hood estimate of a model involving unobserved parameters. In the case of PLRM,

we consider the group assignments Z = {zn}Nn=1 as latent variables that guide the

estimation procedure. The groups’ preference vectors W = {wk}Kk=1, as well as the

mixture proportion π, are unknown parameters to be maximized during the maxi-

mization step. The initial estimates are chosen randomly.

Expectation Step In the expectation step, we estimate the latent variables

(Z), and calculate the expected value of the log likelihood function with respect to

their a posteriori distribution. We denote the expected value of the log likelihood as

follows:

Q(W,π|W ′, π′) = EZ|R,W ′,π′,X [logL(R,Z,W, π|X)] , (5.5)

where W ′ and π′ are the current parameter estimates.

Let Tnk be an auxiliary function defined as follows:

Tnk =
P(zn = k|π′)PL

(
r(n)| exp

(
X̄nw

′
k
T
))

∑K
l=1 P(zn = l|π′)PL

(
r(n)| exp

(
X̄nw′l

T
)) . (5.6)

Then, we can rewrite Eq. 5.5 into Eq. 5.7 below:

Q(W,π|W ′, π′) = log P(π|α) +
K∑
k=1

log P(wk|0, σ2)+

N∑
n=1

K∑
k=1

Tnk
(
log P(zn = k|π) + log P

(
r(n)| exp

(
X̄nwk

T
)))

(5.7)

Maximization Step Eq. 5.7 is used to maximize the model parameters π and

W .
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Updating π: An update step can be written for π:

πk =
1

λ

(
N∑
n=1

Tnk + α− 1

)
, (5.8)

where λ =
N∑
n=1

(
K∑
k=1

Tnk + α− 1

)
(5.9)

To make sure that every πk is positive, we accept only α > 1, so that α − 1 =

β > 0 serves as a smoothing pseudo-count for each group.

Updating W : The update for groups’ preference vectors wk can be done

via iterative optimization, using, for example, BFGS (Broyden-Fletcher-Goldfarb-

Shanno) algorithm [103]. The function to be optimized for every k ∈ {1, 2, ..., K},

w ≡ wk is:

F (w) = −ww
T

2σ2
+

N∑
n=1

K∑
k=1

Tnk log PL
(
r(n)| exp

(
X̄nw

T
))

(5.10)

The derivative for the d-th element w[d] of the vector w can be computed as

follows:

dF (w)

dw[d]
= −w[d]

σ2
+

N∑
n=1

K∑
k=1

Tnk

|X̄n|∑
i=1

(
xi[d]−

∑|X̄n|
l=i xl[d]exlw

T∑|X̄n|
l=i e

xlwT

)
(5.11)

5.3.2 Prediction

Once the model parameters are learned, we can use the model for predictions. Here,

we discuss two prediction tasks.

Group Assignment For the first prediction task, given a ranked list, predict the

latent preference group that this ranked list belongs to. This task allows us to align a

new ranked list to one of the learnt preference groups. To address this task, we pick

the z ∈ {1, 2, ..., K} that maximizes the a posteriori distribution of this assignment.

Let X̄ be an items set, and r its ranking. Given the trained model parameters, we
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want to maximize the following probability:

P(z|r, π,W, X̄) ∝ P(z, r, π,W, X̄)

= P(π|α)
K∏
k=1

P(wk|0, σ2)× Prob(z|π)PL
(
r| exp

(
X̄wz

T
))

∝ P(z|π)PL
(
r| exp

(
X̄wz

T
))

(5.12)

Ranking Prediction For the second prediction task, given a set of items, where

a ranking for some subset of the items is known, predict the ranks of the other items.

This allows us to extend the rankings to other items beyond the known ranking. To

address this task, we first predict the group assignment to which the set of items

belongs, based on the known subset ranking (as in the first task). Once the group

assignment z∗ is identified, the remaining items of X̃ whose rankings are not yet

known are arranged into a ranked list, using the group’s Plackett-Luce Regression

parameter, i.e., Y = X̃wz∗
T . Taking into account the Plackett-Luce model proper-

ties, greater values yield higher rank positions.

5.4 Experiments

The objectives of the following experiments are two-fold. First, as PLRM both dis-

covers the latent preference groups, as well as learns a ranking function for each

group, we would like to investigate the relationship between these two objectives,

particularly comparing the joint modeling approach vs. the disjoint pipeline ap-

proach. Second, since PLRM is designed for a heterogeneous ranking population,

we would like to verify its applicability, particularly when compared to a baseline

that assumes a homogeneous ranking population.

5.4.1 Datasets

We describe four datasets used in the experiments. The first two: PubFig and OSR

will be our main datasets that appear in all experiments, because they have known
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cluster labels, which are necessary as ground truth for validating the accuracy of

identifying the preference groups. In addition, we include another two datasets:

Comp and DCam, with rankings but without known cluster labels, which we would

use only in the second half of the experiments to evaluate ranking accuracies for

heterogeneous populations.

Public Figures (PubFig). This dataset1, described by [136], consists of 772

facial images (items) of 8 public figures (∼ 100 images per person). The 8 public

figures are ranked with respect to 11 physical attributes (e.g., masculine-looking,

pointy nose, big lips), as listed in Table 5.2. Each public figure is identified by a

letter2. Expression A ≺ B means that item A precedes item B in the permutation.

Some items share the same rank position. The third column shows the permutation

lengths possible for each attribute.

These 11 attributes are considered the ground truth preference groups, because

each induces a different ranking over the 8 identities. For experiments, we con-

struct 300 ranked lists for each attribute, for a total of 3300 ranked lists. Each list is

constructed by sampling an image for each identity. The feature vector of each im-

age is a concatenation of 512-dimensional gist descriptor and a 45-dimensional Lab

color histogram. The resulting collection of ranked lists and their feature vectors

(but without the ground truth labels) are pooled together. For learning, we create

ten random splits, such that 90% of the ranked lists for each attribute are used for

training vs. 10% for testing, and average the accuracies.

Outdoor Scene Recognition (OSR) This dataset 1, described by [136], con-

tains 2688 scenes with different spatial envelopes from 8 categories3. A scene (item)

is represented by its 512-dimensional gist descriptor (feature vector). The categories

are organized into rankings with respect to 6 attributes (e.g., natural, open, perspec-

tive), as shown in Table 5.2. These attributes are considered the ground truth pref-

1https://filebox.ece.vt.edu/˜parikh/relative.html
2The 8 identities in PubFig are: Alex Rodriguez (A), Clive Owen (C), Hugh Laurie (H), Jared

Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo Mortensen (V) and Zac Efron (Z).
3The 8 categories in OSR are: coast (C), forest (F), highway (H), inside-city (I), mountain (M),

open-country (O), street (S) and tall-building (T).
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Attribute Permutation Length

PubFig
Masculine-looking S≺M≺Z≺V≺J≺A≺H≺C 8
White A≺C≺H≺Z≺J≺S≺M≺V 8
Young V≺H≺C≺J≺A≺S≺Z≺M 8
Smiling J≺V≺H≺{A,C}≺{S,Z}≺M 6
Chubby V≺J≺H≺C≺Z≺M≺S≺A 8
Visible Forehead J≺Z≺M≺S≺{A,C,H,V} 5
Bushy Eyebrows M≺S≺Z≺V≺H≺A≺C≺J 8
Narrow Eyes M≺J≺S≺A≺H≺C≺V≺Z 8
Pointy Nose A≺C≺{J,M,V}≺S≺Z≺H 6
Big Lips H≺J≺V≺Z≺C≺M≺A≺S 8
Round Face H≺V≺J≺C≺Z≺A≺S≺M 8

OSR
Natural T≺{I,S}≺H≺{C,O,M,F} 4
Open {T,F}≺{I,S}≺M≺{H,C,O} 4
Perspective O≺C≺{M,F}≺H≺I≺S≺T 7
Large Objects F≺{O,M}≺{I,S}≺{H,C}≺T 5
Diagonal Plane F≺{O,M}≺C≺{I,S}≺H≺T 6
Close Depth C≺M≺O≺{T,I,S,H,F} 4

Table 5.2: Permutations on Attributes [136] (Ground Truth Rankings).

erence groups. As in PubFig, we construct 300 ranked lists for each attribute (for a

total of 1800 ranked lists), and create ten random splits of 90:10 for training:testing.

Computer Survey (Comp) This marketing-related dataset4 is in the form of

surveys [185]. The subjects were asked to rate 20 personal computers (items) based

on their likelihood of purchasing each computer (on a scale from 0 to 10). A com-

puter is described by its feature vector, which indicates intrinsic characteristics of

the computer (e.g., amount of RAM, CPU speed) as well as extrinsic features (e.g.,

hotline service availability, warranty), resulting in a total of 13 binary features. We

excluded subjects with missing responses and with fewer than 5 distinct likelihood

values; these were 33 out of 201 subjects. Therefore, 168 subjects were used in

experiments. We induce a ranked list of computers for each subject based on the

likelihood ratings.

Digital Cameras (DCam) The last dataset concerns digital cameras (items).

4https://github.com/probml/pmtkdata/tree/master/
conjointAnalysisComputerBuyers
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We collected the specifications of 876 digital cameras from www.dpreview.com and

formed feature vectors according to their specifications. These include weight, num-

ber of pixels, sensor size, body type, resulting in a total of 32 features. These cam-

eras were manually linked to Amazon product pages (www.amazon.com). We used

the public Amazon dataset5 described in [113, 112]. Ranked lists among the cam-

eras were induced from ratings given by Amazon reviewers (on a scale from 1 to

5). We retain only reviewers with at least 3 distinct rating values within the linked

data, resulting in 880 ranked lists.

5.4.2 Evaluation Tasks and Metrics

In the experiments, we evaluate the methods based on two prediction tasks that we

have outlined earlier in Section 5.3.2.

Group Assignment The first task is to assign a ranked list to the correct prefer-

ence group. This can only be evaluated on PubFig and OSR, with known preference

groups.

To measure the group assignment accuracy, we compare the preference groups

arrived at by a model to the ground truth. For evaluation metric, we use the Rand

Index (RI), a widely used statistical measure for data clustering. This metric is

defined on the space of object pairs. We want to assign two objects (ranked lists)

to the same latent preference group, if and only if they belong to the same ground

truth grouping. Otherwise, we want to assign them to two different latent preference

groups. The former is known as true positive (TP ), while the latter is known as true

negative (TN ). For N objects, the total number of object pairs is N(N − 1)/2.

Therefore, the Rand Index is defined as follows:

RI =
2(TP + TN)

N(N − 1)
(5.13)

Rand Index or RI ranges from 0 (worst) to 1 (best). We will express them as

5http://jmcauley.ucsd.edu/data/amazon/
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percentages.

Ranking The second evaluation task is to predict the ranking of items based

on their features. To measure the ranking accuracy, we employ Kendall’s Tau cor-

relation coefficient. It measures how similar two ranked lists are in terms of the dif-

ference between two probabilities, namely: the probability that the observed ranked

lists are in the same order versus the probability that they are not.

Given two ranked listsA = (ai)
M
i=1 andB = (bi)

M
i=1 in the form of permutations,

we say that for i 6= j, a pair (ai, bi) is concordant with another pair (aj, bj) if either

both ai � aj and bi � bj , or both ai ≺ aj and bi ≺ bj . Otherwise we say that the

pairs are discordant. Kendall’s Tau is defined as follows:

τ =
# concordant pairs− # discordant pairs

1
2
M(M − 1)

. (5.14)

τ can take the values between minus one and plus one. For evaluation purposes, we

re-normalize the coefficient so that it yields a value from zero to one, as follows:

τ ∗ =
τ + 1

2
=

# concordant pairs
1
2
M(M − 1)

. (5.15)

We use Kendall’s Tau to compare the ranking produced by a method with the

ground truth. Thus, higher Kendall’s Tau is better. We will express the value in

terms of percentages, averaging across the ranked lists in the testing set.

Where perfect rankings are known, Kendall’s Tau better reflects how close an

output ranking is to the perfect ranking [46]. In our datasets, all rank positions are

important, and not just the top positions. For instance, in PubFig when ranking

facial images based on a certain physical attribute, we wish to get the ranking right

across the full length of the list. For that reason, Kendall’s Tau is more appropriate

than those favoring the top-ranked elements such as DCG.
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Method PubFig
{Masculine, Pointy Nose, Round Face} All
Random Exclusive All-for-One Random

PLRM 99.8 100. 99.2 89.4
PLM 99.8 51.1 55.7 76.3

Method OSR
{Natural, Large Objects, Close Depth} All
Random Exclusive All-for-One Random

PLRM 95.1 98.7 99.6 83.4
PLM 56.1 60.5 55.7 57.9

Table 5.3: Group Assignment (Rand Index).

5.4.3 Compare to Pipeline Approach

Here, we seek to evaluate the efficacy of the PLRM model, which joins together the

tasks of discovering the preference groups as well as learning a ranking function for

each group. As we look into validating both preference groups and ranking, we can

use only PubFig and OSR in these experiments.

Group Assignment We first explore how well PLRM can recover the ground

truth clustering structure within the data (i.e., the attributes in PubFig and OSR).

The most appropriate baseline is Plackett-Luce Mixture or PLM, which is a mixture

model based on Plackett-Luce that does not use the feature space representation to

generalize elements beyond their identity (see Section 5.2). That way, we can see

how PLRM’s modeling of regression-based parameters based on features helps in

the clustering objective. The number of latent preference groups K in both PLRM

and PLM is set to the actual number of attributes in the respective datasets.

The clustering results for PLRM and PLM are shown in Table 5.3. Since the

effect of heterogeneous rankings can most clearly be studied when the attributes

are really diverse and distinct, we start with an experiment involving three such

attributes. For PubFig, we use {Masculine-looking, Pointy Nose, Round Face}.

For OSR, we use {Natural, Large Objects, Close Depth}. In each case, the three

attributes are diverse, with the lowest cumulative Kendall’s Tau-b statistics (adjusted

for ties), indicating stronger disagreement in terms of the permutation among the
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three attributes.

Furthermore, for greater insight into results, we consider three different ways of

sampling for generating ranked lists.

• In the Random experiment, we sample items of each identity at random for

each considered attribute. For PubFig, both PLRM and PLM do well, achiev-

ing close to 99.8% in terms of Rand Index. In this case, the number of samples

is enough to learn an appropriate ranking value for each element in the dataset

with respect to the attributes (each person in PubFig has only about 100 im-

ages). However, for OSR, PLRM with 95.1% outperforms PLM with 56.1%

significantly. Because it relies on identities, but not features, PLM performs

worse in the case where there is insufficient ranking information for specific

items, such as in OSR.

• In the Exclusive experiment, we consider three non-overlapping partitions of

items, one for each attribute, from which the ranked lists are generated. In

this scenario, PLRM could still learn through the feature space, getting 100%

for PubFig and 98.7% for OSR. In contrast, PLM cannot learn how the same

items may be ranked differently, and thus gets lower Rand Indices of 51.1%

for PubFig and 60.5% for OSR. This shows the limitation of PLM when an

item has not been seen across all the preference groups, which is overcome

by PLRM that does not need to see the exact item if other items with similar

features have been seen.

• In the All-for-One experiment, we first select a subset of items to rank, and

then generate the ranked lists for all attributes. Next, we select a different

subset of items to rank. Therefore, two ranked lists from the same attribute

do not share items. Although we always see all rankings from all attributes,

there is not enough information to connect different ranked lists of the same

attribute. This showcases the weakness of PLM that requires to have seen

cooccurrences of items, whereas PLRM that works through the feature space
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can still solve it, attaining 99% accuracies for both datasets, as compared to

PLM’s 55.7%.

Finally, we consider all the attributes (11 for PubFig and 6 for OSR), and show

the results under the All columns. Overall, PLRM does a better job in clustering

than PLM. For PubFig, PLRM’s 89.4% on PubFig and 83.4% on OSR are better

than PLM’s results (bold indicates best results). PLM is unable to generalize from

item id, while PLRM seeks ranked lists that are consistent with the ranking function.

Predicting Group Assignment with Subset Length In the previous experi-

ments, we have assumed that we have ranked lists of sufficient length, and seek to

identify the group. In some predictive scenarios, we may have a new ranked list

with very few rankings for which we would like to know what its ranking function

would be, in order to predict unseen rankings. We first need to identify its group

assignment, in order to identify its ranking function.
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Figure 5.2: Predicting Group Assignments Based on Subset Length.

Figure 5.2 shows the clustering results when only a subset of the ranked list

(of a specified length) is used for group assignment. This experiment is for All

attributes with Random sampling. The figure shows that for both PLRM and PLM,

the longer the subset length used, the more accurate is the group assignment, which

is reasonable because there is more information to identify the group. In relative

terms, PLRM considerably outperforms the PLM, due to the former’s feature-based

nature. PLM may not result in reasonable predictions for unseen items, in which
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Method PubFig
{Masculine, Pointy Nose, Round Face} All
Random Exclusive All-for-One Random

PLRM 89.8 91.6 89.7 85.1
PLM+PLR 91.3 89.2 80.6 86.6

Method OSR
{Natural, Large Objects, Close Depth} All
Random Exclusive All-for-One Random

PLRM 71.7 74.7 89.5 76.9
PLM+PLR 63.4 66.9 86.3 66.5

Table 5.4: Ranking (Normalized Kendall’s Tau).

case the most probable cluster according to π is chosen.

Ranking Prediction It is possible to predict unseen ranking of items if the

preference group of a judge (ranked list) is known (see Section 5.3.2). Given a set

of items, we consider the scenario when a judge is first asked to rank some subset

of these items. After the initial ranking, we then predict the preference group for

the judge, and determine the ranking for the rest of the items on the judge’s behalf.

The previously identified baseline PLM can only perform clustering, but not

ranking prediction of unseen items because it does not consider features. To inves-

tigate the effects of both clustering and ranking, we consider a pipeline baseline,

involving first clustering using PLM followed by learning-to-rank using PLR for

each cluster (see Section 5.2).

Table 5.4 shows the results of ranking prediction when the different sampling

strategies are applied, corresponding to the clustering experiments in Table 5.3.

We reserve a subset length of 3 and 2 for PubFig and OSR respectively for first

predicting the group assignment, which still leaves sufficient remaining rankings

to be predicted for all attributes. Thereafter, we use the assigned group’s ranking

function.

In general, the ranking prediction results are consistent with the clustering re-

sults. Most of the time, when PLRM has better clustering performance, it also has

better ranking performance. This is most notable for OSR, whereby PLRM con-

sistently has better ranking performance than PLM+PLR across different sampling
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strategies. For PubFig, that is mostly true, with a couple of reasonable exceptions.

For the three distinct attributes, in the Random experiment, PLRM and PLM have

very similar clustering performances for reasons cited above. Therefore it is reason-

able that PLRM and PLM+PLR also have very similar ranking performances (italics

indicates that the difference is not statistically significant). For All attributes, PLRM

has slightly lower ranking performance. This may be due to the fact that not all the

11 attributes in PubFig are distinct. As we will see shortly, the intrinsic number of

preference groups is around 3 in PubFig, implying that some of the 11 attributes

may be correlated. For OSR, PLRM is better.

5.4.4 Compare to Non-Heterogeneous Approach

We now look into the utility of PLRM in ranking scenarios, particularly comparing

to methods that do not assume a heterogeneous ranking population and thus rely on

a central ranking function. In addition to PubFig and OSR, in these experiments

we use two additional datasets containing user opinion responses: Computer Sur-

vey (Comp) and Digital Cameras (DCam). Since we know the users who rate the

products in DCam, we assign each user to a particular preference group. These

datasets were not studied in the previous section because they lacked ground truth

for clustering. However, they still allow for validation of rankings.

Number of Clusters For this comparison, we first need to determine the num-

ber of preference groups for PLRM. It is not advisable to rely on the known number

of attributes. For one reason, the intrinsic number of preference groups may be

different than the number of attributes. For another reason, some datasets such as

Comp and DCam do not have known preference groups. Therefore, we first de-

termine the intrinsic number of preference groups by varying K for each dataset,

and measure the ranking prediction using the assigned group’s ranking function.

For each dataset, we try to accommodate as long a subset length for group assign-

ment as possible, while still allowing sufficient remaining items to rank. The subset

lengths are 3 for PubFig, 2 for OSR, 3 for Comp, and 3 to 5 for DCam (varying

99



CHAPTER 5. DISCOVERING PREFERENCE GROUPS

1 2 3 4 5 6 7 8

Number of Clusters

65

70

75

80

85

90

N
or

m
al

iz
ed

K
en

da
ll’

s
Ta

u

Datasets
PubFig
OSR
Comp
DCam

Figure 5.3: Ranking Prediction. PLRM with varying number of clusters K.

because users have rated different numbers of items).

Figure 5.3 shows ranking prediction quality plotted against the number of clus-

ters for each dataset. It shows that the greatest gains come from increasing the

number of clusters from 1 to 2, thereafter the performance increases slower or con-

verges. The numbers of clusters or preference groups maximizing the ranking per-

formance are 3 for PubFig, 2 for OSR, and 5 for DCam. For Comp, there is not

much difference among different numbers of clusters, but 2 clusters are slightly bet-

ter than 1; this may be an indicator that there is less heterogeneity overall for Comp.

Subsequently, we will use these numbers to compare to the baseline.

Ranking Prediction As our focus is on validating the applicability to hetero-

geneous ranking population, the most appropriate baseline to PLRM in this respect

is PLR (see Section 5.2), which is based on the same underlying Plackett-Luce re-

gression modeling, but does not model a mixture.

Table 5.5 compares PLRM with the specified numbers of clusters to PLR, which

effectively only has one cluster. The results show that PLRM outperforms PLR on

all datasets. This outperformance is quite considerable and statistically significant

for PubFig, OSR, and DCam. This outperformance helps to support the case that
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Method PubFig OSR Comp DCam
PLRM 85.6 77.0 87.3 85.4
PLR 81.1 66.5 86.2 76.2

Table 5.5: Ranking Prediction: PLRM vs. PLR.

Method PubFig OSR Comp DCam
PLR 81.1 66.5 86.2 76.2
Coordinate Ascent 75.0 58.0 81.9 75.6
SVM-Rank 78.4 67.0 86.6 71.0
RankNet 76.2 63.7 79.6 67.2
ListNet 76.6 64.4 86.8 67.9
RankBoost 78.6 61.7 83.6 58.6

Table 5.6: Comparison of Learning to Rank Methods.

when the population has a high level of heterogeneity, a method that considers mul-

tiple latent preference groups such as PLRM have the potential to do significantly

better. For a dataset that does not have a high level of heterogeneity in the first place,

such as Comp, the improvement is rather modest.

Though PLR is a simplified version of PLRM without mixture modeling, we

point out that PLR is not a weak baseline, and is actually a competitive learning

to rank method in its own right. Table 5.6 benchmarks PLR to popular learning to

rank methods, such as Coordinate Ascent [119], SVM-Rank [80], RankNet [17],

ListNet [20], and RankBoost [49]. We use their implementations in RankLib6 and

SVMrank7. Because these methods are based on very different algorithms, these are

provided as a point of reference, rather than as a direct comparison. Nevertheless,

Table 5.6 shows that PLR gets good results on the datasets. In many cases, PLR is

comparable or even better. This underlines the relative strength of PLR, which in

turn lends greater support to PLRM’s outperformance.

Brief Comment on Running Time Our focus in this work is on effectiveness

and accuracy, and not on computational efficiency. The training times are reason-

able. For instance, among the learning to rank methods, PLR’s training takes less

than a minute. This is comparable to SVM-Rank, and faster than other learning to

6https://sourceforge.net/p/lemur/wiki/RankLib/
7https://www.cs.cornell.edu/people/tj/svm light/
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rank methods. In turn, the training of PLRM requires optimization of latent vari-

ables with EM algorithm. Hence, it takes more time, which increases with the re-

quired number of clusters. For instance, it takes under 30 iterations till convergence

on PubFig, with each iteration taking a minute on average. These time measure-

ments were conducted on a PC with Intel Core i5 CPU 3.3 GHz and 12GB of RAM

running Windows OS.

Case Study To gain a sense of the nature of the clusters that PLRM learns, we

show the top five features for each of the five clusters or preference groups learnt

from DCam:

1. Pentaprism VF (viewfinder), mid-size, CMOS sensor, CCD sensor, mirrorless-style;

2. Pentaprism VF, mid-size, screen size, CMOS sensor, BSI-CMOS sensor, pentamirror VF;

3. Pentaprism VF, mid-size, Foveon X3 sensor, pentamirror VF, rangefinder-style;

4. Tunnel VF, compact, mirrorless, pentaprism VF, Foveon X3 sensor;

5. Max ISO, electronic VF, pentamirror VF, BSI-CMOS sensor, compact.

The first three groups favor mid-size cameras with pentaprism viewfinders hav-

ing CMOS-like sensors. The last two preference groups give more credit to compact

cameras than to mid-size cameras. The last preference group also favors cameras

that can work in low-light conditions. The top features Max ISO (indicating maxi-

mal light sensitivity) and BSI-CMOS Sensor (a specific type of sensor that increases

amount of light can be captured) support this observation.

5.5 Discussion

In this work, we build on the Plackett-Luce model, first introduced by Plackett [141]

and Luce [106] independently. It expresses the probability of a permutation in terms

of element-specific parameters and is related to the aggregation model discussed in

Section 2.2.1. Aside from Plackett-Luce, there are other paradigms for expressing

distribution over rankings. Some are based on the notion of distances [47]. For in-

stance, Mallows model [110] expresses the probability of a permutation in terms of

its distance to a reference permutation. [4, 94, 118] consider a mixture of distance-

based models. Yet another paradigm is Bradley-Terry [13, 48], based on pairwise
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comparisons.

Our notion of a regression based on Plackett-Luce model may be confused with

the one introduced in [3], however, their formulation aims to deal with categorical

data and significantly differs from Plackett-Luce regression discussed here.

Plackett-Luce regression mixture falls under preference mining category, which

is discussed in Section 2.3.2. In the next chapter, we briefly discuss the contribution

of this study and outline future directions.
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EXPLAINING ENTITY COMPARISONS

The ability to quickly analyse large collections of text data becomes more and more

critical. Since manual analysis is time-consuming and expensive even for relatively

small collections of texts, computer-aided processing is necessary to achieve pre-

liminary exploratory analysis in short time. Topic model is a class of probabilistic

models that “reduce” an input corpus into a manageable number of “topics”, where

each topic congeals words that tend to co-occur with one another in documents,

thus signifying some hidden semantics in the corpus. By identifying the topics that

essentialize the corpus, and discerning which ones predominate in a specific docu-

ment, a topic model is a crucial tool for sensemaking.

Increasingly, there are real-world scenarios where the purpose of analyzing a

corpus is to compare entities based on their textual representations (documents).

For example, analysts may seek to explore why one country could achieve a better

healthcare (alternatively economic, educational, etc.) outcome than another based

on certain documents such as country reports. Funding agencies or scientists may

seek a better understanding of what may get a grant proposal funded over another

based on proposal contents. Among the products browsed by consumers, some are

purchased while others are not. Among the purchases, some satisfy customers more

than others. Thus, delving into product descriptions or reviews could reveal insights

on consumer preferences.

An unsupervised topic model, such as Latent Dirichlet Allocation (LDA) [10],
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is oriented towards capturing topics that could reflect the word co-occurrences in

the corpus well. In doing so, its topics tend to capture general semantics. For

instance, a topic model based on country reports may well discover topics aligned

to geographical or linguistic commonalities, which however may or may not bear

direct relevance to the question at hand (e.g., healthcare outcomes). Topics based on

grant proposals may describe various scientific foci, though such topics may group

competing proposals but may not be indicative of their likelihood of acceptance. In

turn, product reviews may yield topics focused on brands or features, but such topics

may coalesce opposing sentiment polarities as words with positive (e.g., “good”)

or negative (e.g., “bad”) connotations tend to co-occur with similar words, e.g.,

“battery life”.

6.1 Problem

We postulate that introducing supervision that signals how one entity (document)

compares to another into topic modeling would better align the topics discovered

from a corpus to the comparison dimension of interest. Suppose that in addition to

a corpus of documents, we are also given some pairwise comparisons among the

documents. Each pairwise comparison indicates which of two documents is con-

sidered “higher” or “better” according to some desired dimension (e.g., a country

healthier than another, a pair of accepted and rejected proposals, a product preferred

to another). Constraining the topic model to “comply” with the pairwise compari-

son observations may yield topics that differentiate entities along the dimension of

interest (e.g., why one product is preferred), rather than simply discovering com-

monality in words (e.g., products with similar features).

There are inherent advantages to modeling pairwise comparisons as opposed

to pointwise ratings. The latter may not even be available in some scenarios. In

the implicit feedback settings, comparisons are naturally relative, when it may be

known that one entity is better, but not necessarily clear by how much in absolute
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terms. For instance, when a consumer browses but skips a product, and purchases

another, the latter is probably preferred to the former. Even when pointwise ratings

are available, fitting the absolute ratings may not always be appropriate. They may

have been assigned by different human subjects (with varying biases and scales),

rendering direct comparison across human subjects inequitable.

Approach In a nutshell, our proposed model CompareLDA associates each

topic with a distribution over words, and each document with a distribution over top-

ics, as in a conventional topic model. In addition, a document topic proportion maps

to a merit value that ranks documents. These entity merit values probabilistically

determine the observed pairwise comparison outcomes. As a generative model,

CompareLDA has generative capacity over unobserved pairwise comparisons. This

enables the model to learn even with relatively few observed comparisons, as we

will see in the experiments. It also generalizes to out-of-training documents whose

topic distributions and entity merit values could be inferred accordingly.

6.2 Model

In this section, we describe the development of our approach CompareLDA, as well

as the methodology to fit the model parameters through variational inference.

CompareLDA is a supervised topic model with non-linear response. A response

variable is associated with a pair of documents (each concerning an entity), and in-

dicates the comparison result: which of the two entities is “better” or ranked higher

than the other. The notion of comparison is latent, and may vary from application

to application.

CompareLDA extends Latent Dirichlet Allocation (LDA). It has the same basis

assumption regarding the association of topics and words, but also a significant dis-

tinction in its incorporation of pairwise comparisons (as we will see shortly). Each

document is generated from a set of latent topics. A topic is an unknown distribution

over the corpus vocabulary, which has to be inferred from the data. The documents
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in a corpus share the same set of topics, but mix them in different proportions. The

topics are associated with the words and essentially defined as distributions over the

vocabulary. Each word is a sample from only one topic distribution.

We are given a set of entitiesD = {di}Ni=1. An entity is represented by its textual

form, a document. The notation di is used to refer to either entity or document.

Furthermore, we assume that an oracle takes a pair of entities at a time, di and

dj , ‘glances’ at their documents, and makes a comparison decision: which of the

two entities is better according to some definition of merit, e.g., healthier, more

likely to get funded, preferred by consumers. The decision would be based on the

topics discussed in the text rather than on individual words. The oracle makes M

pairwise comparison decisions, providing the training data. CompareLDA seeks to

reproduce this judging process by learning the topics, and inferring these topics for

unseen documents.

6.2.1 Definition

CompareLDA unfolds the process in the following way. Each entity is imbued with

a latent merit value, inducing a pairwise comparison with another entity. Suppose

mi andmj are the respective merit values for a pair of entities di and dj . Ifmi > mj ,

then di is more likely, though not certainly, to come out the winner in a comparison

with dj .

To define the probability of winning in a comparison, we use the sigmoid func-

tion:

P(di � dj) = σ(mi −mj) =
1

1 + e−(mi−mj)
. (6.1)

The greater is mi than mj , the higher the probability that di would be favored

by the oracle, as the probability in Eq. 6.1 tends towards 1. When the merit val-

ues are similar mi ≈ mj , the probability reflects uncertainty in the outcome, i.e.,

P(di � dj) ≈ 0.5.

Presumably, the oracle obtains the comparison information from the topics. For

instance, preferred products or healthier countries may be associated with special
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Figure 6.1: CompareLDA in Plate Notation.

qualities whose description manifests as topics. CompareLDA uses the empirical

topic distributions of the texts, and transforms them into the entity merit values via

a linear regression. Given a text di where each word wij is assigned to topic zij , we

calculate its empirical topic distribution z̄i as follows:

z̄i =
1

|di|

|di|∑
j=1

zij. (6.2)

For some regression parameters η̄, we assume:

mi = η̄ · z̄i (6.3)

Note that for such merit values as defined above, the bias term is effectively redun-

dant, as it vanishes when comparison is concerned (Eq. 6.1).

The intuition behind regressing on topics is that some topics help to gain merit

values (e.g., newly introduced product features), while others may decrease the

merit values (e.g., discovered flaws). Considering the difference in the topic pro-

portions of two products, z̄i− z̄j , we would be able to draw the conclusion on which

entity is likely the winner.
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6.2.2 Generative Process

Here we summarize the generative process of CompareLDA, whose plate notation

is given in Figure 6.1.

1. We sample K topic distributions {θi}Ki=1 from Dirichlet distribution with α

prior:

θi ∼ Dirichlet(α).

2. We sample η̄, the transformation weights from K-dimensional Gaussian with

zero mean and σ2 variance:

η̄ ∼ N (0, σ2).

3. For each document:

(a) We sample its topic proportion {πi}Ni=1 from Dirichlet distribution with

β prior:

πi ∼ Dirichlet(β).

(b) For each word wij in document di we sample its topic assignment vari-

able zij:

zij ∼ Categorical(πi);

and based on the topic assignment the observed word:

wij ∼ Categorical(θzij).

(c) We calculate empirical topic proportion z̄i and transform it to the entity

merit value mi:

mi = η̄ · z̄i = η̄ ·

 1

|di|

|di|∑
i=1

zij

 .
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4. For each pairwise comparison trial ri, we sample the winner ci:

ci ∼ Bernoulli(σ(mri[1] −mri[2])).

ri is a pair of indices indicating which documents are compared in the trial,

and ci indicates the winner for the pair. If ci = 1, then item dri[1] is the winner,

otherwise dri[2] is.

The complete data likelihood for a set of entities/documents D and their corre-

sponding pairwise comparison observations (R,C) is as follows:

P(D,Z,Θ,Π, R, C, η) = P(η|σ2)
K∏
i=1

P(θi|α)

×
N∏
i=1

P(πi|β)×
N∏
i=1

|di|∏
j=1

P(zij|πi)P(wij|θzij)×
M∏
i=1

P(ci|mri[1],mri[2]) (6.4)

We consider the collapsed version of the likelihood by integrating out the multi-

nomial parameters.

P(D,Z,R,C, η) =

∫
Θ

∫
Π

P(D,Z,Θ,Π, R, η)

= P(η̄|σ2)×
N∏
i=1

P(zi·|β)× P(W |Z, α)×
M∏
i=1

P(ci|mri[1],mri[2]), (6.5)

where P(zi·|β) and P(W |Z, α) are Dirichlet-multinomial distributions over topics

and words.
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6.2.3 Model Fitting

To find the maximizing latent parameters η̄ and Z for the posteriori distribution, we

use variational approximation algorithm to optimize the evidence lower bound L.

log P(D,Z,R,C, η) ≥ L(Z,R,C, η) = log P(η|σ2)

+
N∑
i=1

〈log P(Zi|α)〉+ 〈log P(W |Z, β)〉+
M∑
i=1

〈
log P(ci|mri[1],mri[2])

〉
+ H(q),

(6.6)

where 〈 · 〉 indicates expectation taken with respect to the variational distribution

q(Z), and H( · ) is the entropy operator. We treat η̄ as a model parameter.

We factorize the variational distribution into independent factors, one for each

zij . In most of the cases, assuming the fully factorized distribution is enough to

obtain the tractable closed-form update equations, where each factorized distribu-

tion will have the same form as their conjugate priors. However, due to non-linear

interaction term between the entities, the update formulas are intractable. We addi-

tionally assume that each q(zij) is an indicator probability distribution, which places

all the probability mass on the one topic q(zij) = q(zij|vij) = I[zij=vij ]. Essentially

each vij represents empirical topic assignment for word wij .

q(Z|V ) =
N∏
i=1

|di|∏
j=1

q(zij|vij) =
N∏
i=1

|di|∏
j=1

I[zij=vij ] (6.7)

Note that under this assumption, expectation operator does not change any f(V ):

〈f(V )〉 = f(V ).

We use coordinate-ascent variational approximation, and maximize the evidence

lower bound with respect to η̄ and V , optimizing each parameter in turn. Further we

assume that the document comparisons are configured in such a way that for any i,

ci = 1, to simplify the description of equations.
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Optimizing η: With V fixed, we want to optimize the following objective:

f(η̄) = log P(η̄|σ2) +
M∑
i=1

〈
log P(ci|mri[1],mri[2])

〉
= −

K∑
i=1

η2
i

2σ2
−

M∑
i=1

log
(

1 + e−η̄·(v̄ri[1]−v̄ri[2])
)

(6.8)

where v̄i =
(∑|di|

j=1 vij

)
/|di|. We develop a basic gradient ascent algorithm, taking

derivative of f(η̄) with respect to ηj:

f ′ηj(η̄) = − ηj
σ2
−

M∑
i=1

(v̄ri[1])j − (v̄ri[2])j

1 + e−η̄·(v̄ri[1]−v̄ri[2])
. (6.9)

Optimizing V : With η̄ fixed, we seek the empirical topic assignments that

maximize (6.6). As exhaustive search for the optimal solution has exponential com-

plexity and, therefore, is infeasible for any reasonable datasets, we exploit the prob-

abilistic nature of the model and develop Metropolis-Hastings [60] procedure for

approximate optimization. Metropolis-Hasting is a method for obtaining a sequence

of random samples from a probability distribution for which direct sampling is dif-

ficult. In case of CompareLDA, the procedure changes one word-topic assignment

vj as a time, eventually approximating the probability distribution of word-topic as-

signments for the whole corpus. We work with probability distribution induced by

the empirical lower bound. Here we compute the difference between two word-topic

assignments, that are different only in one assignment, current assignment vij = a

and evaluated assignment vij = b (chosen at random).
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E
vij
a→b = log (β + ni(a)− 1)− log (β + ni(b))

+ log (α + n(a, wij)− 1)− log (α + n(b, wij))

− log (α|X|+ n(a, · ))− 1) + log (α|X|+ n(b, · ))

+
M∑
k=1

log

(
1 + e

η̄·(v̄rk[1]−v̄rk[2])+δi

(
I[rk[1]=i]

−I[rk[2]=i]

))

−
M∑
k=1

log
(

1 + eη̄·(v̄rk[1]−v̄rk[2])
)

(6.10)

where X is vocabulary, ni(z) is document-topic count, n(z, w) is term-topic count,

n(z, · ) =
∑

w∈X n(z, w), and δi = (ηb − ηa) /|di|. The acceptance probability

γ = exp
(
−Evij

a→b
)

then indicates how probable the evaluated sample is with respect

to the current assignment, according to the approximated sample. If we attempt

to move to an assignment which is more probable than the current one w.r.t the

evidence lower bound, we always accept the move. If the move is taken towards the

less probable assignment, it will be accepted with γ probability.

For the purpose of optimization, the Metropolis-Hasting algorithm can be con-

verted to simulated annealing procedure, where acceptance probability γ is reduced

over time, to prevent the moves towards less probable states. We use γ
1
T as the

probability of accepting a new assignment, where T , a temperature, approaches 0

as the iteration count increases.

6.3 Experiments

Our experimental objective is to validate the efficacy of CompareLDA in deriving

topics that are well-aligned to document comparisons. First, we investigate the

utility of modeling pairwise comparisons as supervision on topic models, vis-à-vis a

baseline with pointwise supervision. Thereafter, we move to additional experiments

and discussions, which shed light upon various aspects of the model.
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6.3.1 Datasets

For experiments, we rely on public text corpora, whereby not only it is meaningful

to attach the notion of comparisons to entities within a corpus, but the comparisons

also define a part of the core semantics of the corpus. We identify three such corpora

that yield five experimental datasets as follows.

Wikipedia The first is a set of three datasets constructed from Wikipedia1

pages with country infobox and category. The corpus contains 467 entities (coun-

tries and associations, e.g., BRICS, NATO). The page content is the document. As

supervision, we induce three sets of pairwise comparisons from Wikipedia’s lists of

countries: by alcohol consumption (AC), by cigarette consumption (CC), and by life

expectancy (LE). Each list results in a different number of pairwise comparisons:

17,955 for AC, 16,290 for CC, and 16,653 for LE. Coupled with the text corpus,

each set of pairwise comparisons constitutes a dataset. Our intention is to study if

CompareLDA could derive different topics from the same corpus, but with different

pairwise comparisons.

Product Reviews The second dataset is from Amazon as described in [112,

113]. Here, an entity is a review from the Electronics category. We assume that the

reviews mention various features and qualities to illustrate the product’s intrinsic

merit. As supervision, we induce pairwise comparisons based on the number of stars

indicated by the reviews. The “positive” reviews (5 and 4 stars) are compared to the

“negative” reviews (2 and 1 stars), i.e., positive “win” over negative. We sample

10,000 reviews at random to assemble the corpus. For this dataset, out of all the

induced comparisons, we randomly sample 0.25% to simulate a realistic scenario

of where only partial comparisons have been observed. The dataset contains 43,881

pairwise comparisons.

Movie Reviews The third dataset contains movie reviews [134]. We used the

4-star scale as described in [134] to induce pairwise comparisons, i.e., a review with

more stars “wins”. The intuition here is to discover the topics that are aligned with

1We used the Wikipedia dump dated 30 July 2018.
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what makes a good movie. As before for the Product Reviews corpus, we retain

only 0.25% of comparisons as supervision. The corpus contains 5,006 documents

along with 21,965 comparisons.

Each dataset is split into training and testing folds in 80:20 proportion respec-

tively. Conservatively, comparisons that cross folds are ignored during training and

evaluation. The corpora undergo the same preprocessing steps, i.e., removing short

documents, punctuation, stop-words; the tokens converted to their lemmas. For

each dataset, we retain top 5000-term vocabulary selected by tf-idf.

6.3.2 Evaluation

To jointly model topics and pairwise comparisons, a method should be adept at both

assigning topics to words and assessing the ranking among documents. We explore

these respective dimensions of evaluation.

Ranking To assess ranking quality, we report the ranking accuracy. For two

entities di and dj , we define a function f , where f(di, dj) returns 1 if di is preferred

over dj in comparison, 0 when the preference between di and dj is not assumed,

and −1 when dj is preferred over di. Given a set of entities D = {di}Mi=1 and ref-

erence comparison function f (ground-truth) and its approximation g (prediction),

we define the ranking accuracy (or accuracy) as follows:

A =

∑M
i=1

∑M
j=1 I[f(di,dj)=1]I[g(di,dj)=1]∑M
i=1

∑M
j=1 I[f(di,dj)=1]

(6.11)

When the approximation and reference functions are identical, then approxima-

tion is good and A = 1. In case of complete disagreement, g(di, dj) 6= 1 for every

di and dj such that f(di, dj) = 1, then A = 0. The ranking accuracy is closely

related to Kendall’s Tau. While Kendall’s Tau is suitable for totally ordered sets, the

proposed metric considers only items for which relative comparison makes sense,

and thus it is more appropriate in our study.

Topics Topic models are commonly evaluated by estimating probability of
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Figure 6.2: Wikipedia Dataset Ranked by Alcohol Consumption.

held-out documents. The intuition is that a better model will give rise to the like-

lihood of held-out documents D. L = log P(D|M)∑
d∈D |d|

is per-word log-likelihood for an

LDA model with parametersM. To approximate L marginalized over all possible

topic assignments, we use Chib-style estimator [178].

6.3.3 Comparison to Baseline

As our proposed CompareLDA2 is the first topic model supervised by pairwise com-

parisons, our main baseline is the previous topic model supervised by pointwise

response variables. Among such models (see Related Work), sLDA3 bases the pre-

diction on empirical topic assignments, which makes the former an ideal baseline to

CompareLDA that also uses empirical topic assignments. sLDA predicts merit val-

ues of documents directly via regression. When supervision is supplied in terms of

pairwise comparisons, this model is not immediately applicable. Instead, it requires

preprocessing to convert the pairwise comparisons into pointwise merit values for

each document, which are then supplied to sLDA. For conversion, we employ the

Bradley-Terry-Luce (BTL) model [13, 108] due to its similarity to the comparison

component of CompareLDA.

We evaluate both models by varying the number of topics (default is 80). The

2We plan to eventually release our implementation over a public repository upon publication.
3We used the following implementation: https://github.com/vietansegan/segan/
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Figure 6.3: Wikipedia Dataset Ranked by Cigarette Consumption.

experiments are repeated 10 times with different random initializations. Figures 6.2

to 6.6 show the results for the five datasets for both accuracy and likelihood.

CompareLDA consistently outperforms sLDA on each dataset with respect to

both evaluation dimensions. For instance, Figure 6.2(a) shows the ranking accuracy

for the Wikipedia dataset ranked by alcohol consumption. In general CompareLDA

achieves better results as the number of topics increases. The accuracy gap over

sLDA increases significantly, when the number of topics hits 10 and beyond. Bars

denote the standard deviation. The deviation tends to reduce as the number of topics

increase. This reflects well on CompareLDA, suggesting that supervision in the

form of pairwise comparisons helps to uncover the ranking structure. CompareLDA

demonstrates better alignment of topics with rankings, reaching higher than 75%

accuracy. sLDA shows lower performance, hovering around 55%, which is close to

random; this suggests that the regression objective does not fit the problem, when

pairwise supervision is concerned.

In turn, Figure 6.2(b) shows that CompareLDA reaches significantly higher log-

likelihood than sLDA as well. The log-likelihood plots show significant outper-

formance by CompareLDA over sLDA even when the number of topics is small.

It seems that the regression objective interferes with the objective to infer “good”

predictable topics.

The other Wikipedia datasets ranked by cigarette consumption (Figure 6.3) and
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Figure 6.4: Wikipedia Dataset Ranked by Life Expectancy.
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Figure 6.5: Product Reviews.

2 5 10 20 40 80

# of topics

45

50

55

60

65

70

A
cc
u
ra
cy CompareLDA

sLDA

(a) Accuracy

2 5 10 20 40 80

# of topics

−1.30

−1.25

−1.20

−1.15

−1.10

−1.05

−1.00

P
er
-w

or
d
H
el
d
-o
u
t
L
og
-l
ik
el
ih
o
o
d

×101

CompareLDA

sLDA

(b) Log-likelihood

Figure 6.6: Movie Reviews.
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Figure 6.7: Varying Number of Pairwise Comparisons. Wikipedia dataset ranked
by cigarette consumption. The other rankings show similar behavior.

life expectancy (Figure 6.4) show similar trends, evidence that CompareLDA could

derive different topic models from the same corpus by fitting different supervisions.

For the review datasets (Figures 6.5 and 6.6), the outperformance is more vivid and

starts with a few topics.

6.3.4 Amount of Supervision

We study the amount of supervision, as the number of comparisons for the fully

ordered set of N elements is quadratic, O(N2), i.e., harder to obtain than inde-

pendently labeling each document. Figure 6.7 shows the performance when the

amount of supervision gradually increases from 1% to 100% on the Wikipedia

dataset ranked by cigarette consumption for 80 topics (other rankings and topic

counts show similar results). Figure 6.7(a) shows that initially ranking accuracy

grows fast as the amount of supervision increases. When 5% of supervision is sup-

plied, rankings accuracy remains stable. Figure 6.7(b) shows that log-likelihood

remains stable regardless of the amount of supervision. These results indicate that

CompareLDA does not require fully ordered set to fit the model and, therefore, a

small subset of comparisons may be used to achieve high ranking performance and

topic quality.
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Data CompareLDA LDA+BTL-R
Wikipedia (AC) 78.8± 0.8 75.4± 1.6
Wikipedia (CC) 75.6± 2.3 74.9± 1.8
Wikipedia (LE) 85.7± 2.3 84.0± 1.8
Product Reviews 81.4± 1.0 76.7± 1.0
Movie Reviews 68.8± 1.7 63.8± 1.3

Table 6.1: Accuracy. AC - Alcohol Consumption, CC - Cigarette Consumption, LE
- Life Expectancy.

6.3.5 Joint vs. Pipeline Models

One may improbably surmise that LDA may naturally align with document compar-

isons anyway, even without supervision. To debunk this, we consider a decoupled

form of CompareLDA, which first discovers topics with LDA, and then solves the

comparison problem using the empirical topic assignments. To tackle the pairwise

comparison, we introduce Bradley-Terry-Luce regression (BTL-R), which is simi-

lar to CompareLDA’s comparison modeling but done as a separate step. We refer to

this pipeline as LDA+BTL-R.

Table 6.1 shows the ranking accuracy (and 95% confidence intervals). Bold

typeface indicates statistically significant difference. CompareLDA shows better

results than its pipeline equivalent on every dataset, with significant improvement

on Wikipedia ranked by alcohol consumption and the review datasets. In turn, for

the held-out log-likelihood, one may expect some decrease in performance due to

additional objective to satisfy the comparison supervision, whereas LDA (BTL-R

part does not influence topic inference in this case) cares only about getting the top-

ics right. Gratifyingly, Table 6.2 shows that in fact there is no significant difference

between the topics derived by CompareLDA and LDA, supporting that Compar-

eLDA could align topics to comparisons well without hurting the likelihood.

6.3.6 sLDA Supervision

As mentioned earlier, sLDA requires pointwise supervision. When the input is pair-

wise, we need a preprocessing step. In a scenario where some form of pointwise
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Data CompareLDA LDA(+BTL-R)
Wikipedia (AC) −10.084± 0.007 −10.084± 0.010
Wikipedia (CC) −10.085± 0.005 −10.084± 0.010
Wikipedia (LE) −10.081± 0.010 −10.084± 0.010
Product Reviews −10.391± 0.003 −10.389± 0.003
Movie Reviews −10.111± 0.004 −10.111± 0.002

Table 6.2: Log-likelihood. AC - Alcohol Consumption, CC - Cigarette Consump-
tion, LE - Life Expectancy.

Data sLDA sLDA*
Wikipedia (AC) 55.0± 3.4 55.6± 4.2
Wikipedia (CC) 53.6± 6.2 52.6± 5.2
Wikipedia (LE) 52.2± 3.3 50.8± 3.5

Table 6.3: sLDA Accuracy. AC - Alcohol Consumption, CC - Cigarette Consump-
tion, LE - Life Expectancy.

response exists, we could alternatively use that directly, e.g., the rank position in the

list for the Wikipedia dataset. We look into whether the two forms of supervision

affect the results much. sLDA* is supervised with the ranked list, whereas sLDA is

supervised with comparisons. Table 6.3 shows that there is no significant difference

for ranking accuracy between the two. The BTL transformation matters when we

explore held-out log-likelihood on Wikipedia ranked by alcohol consumption (see

Figure 6.4), where it helps to achieve significantly better performance. However,

the differences for the other Wikipedia rankings are not significant. In any case, the

form of sLDA supervision would not affect the earlier conclusions on the relative

comparisons with CompareLDA.

Data sLDA sLDA*
Wikipedia (AC) −11.132± 0.008 −12.367± 0.007
Wikipedia (CC) −12.370± 0.006 −12.368± 0.011
Wikipedia (LE) −12.374± 0.009 −12.373± 0.016

Table 6.4: sLDA Log-likelihood. AC - Alcohol Consumption, CC - Cigarette Con-
sumption, LE - Life Expectancy.
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Top η̄-positive Topics Top η̄-negative Topics
work great well phone use also everything
since need easy good set recommend issue
clear

product would one back new month work
buy get warranty worked return issue prob-
lem year

picture great tv price good quality love
amazing feature best get really recommend
got better

one would tried time review product work
bought got money new first returned differ-
ent try

color great little look came still perfect get
easy could love easily really would want

device work adapter even connection get
computer use unit time product well net-
work car ca

one fan great two really also work air new
room put purchased right got connector

year bought still first week working month
warranty another one since would two
completely last

one use bought price year well good model
work still frame know used wanted made

one thing like money buy get even worth
really could got make review cheap going

Table 6.5: CompareLDA Topics for Product Reviews.

6.3.7 Topics

To get a sense of the semantics reflected by the topics, we show 5 topics associated

with top positive and top negative η̄ parameters. For Product Reviews (Table 6.5),

the η̄-positive topics tend to associate with words of positive connotations, e.g.,

great, well, good, love, etc. η̄-negative topics tend to talk about issues, money,

returns, and warranty. For Wikipedia by alcohol consumption (Table 6.6), some of

η̄-positive topics are associated with the country and region names, e.g., Lithuania,

Estonia, Baltic. These places are, in fact, reported to have higher level of alcohol

consumption. The country name clusters are present in η̄-negative topics as well.

For instance, Islamic countries may have lower level of alcohol consumption due to

religious prohibition.

6.4 Discussion

In this chapter, we describe CompareLDA, a topic model for document comparison.

It is novel in its incorporation of pairwise comparison to align the topics learnt to the

comparison dimension of interest. Qualitative analysis shows that the topics achieve

semantic coherence and are useful in understanding and explaining comparisons.
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Top η̄-positive Topics Top η̄-negative Topics
world country europe century largest na-
tional european language first hungary cen-
tral union law film modern

region war people city group population
state force press east army official political
eastern refugee

state world population united country
economy nation census press million
largest development economic new tax

country world national development popu-
lation education party per election rate na-
tion trade health year specie

world war university british pp united new
great country history london time million
britain oxford

bangladesh libya morocco algeria country
arab libyan moroccan bengal africa alge-
rian berber bengali government sahara

lithuania estonia lithuanian german ger-
many estonian baltic soviet vilnius state li-
etuvos independence europe county eesti

pakistan muslim islamic country islam
maldives muhammad persian pakistani sul-
tanate military india filipino ali power

population language needed people many
year percent capital economy force main
minister small export mi

indian government state united india time
first samoa south court national journal lan-
guage people pacific

Table 6.6: CompareLDA Topics for Wikipedia Ranked by Alcohol Consumption.

Experiments show that it helps to uncover more conducive topics for assessing the

relative merits between entities than baseline with pointwise supervision.
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CONCLUSION

In this study, we explored some components of a comparison mining system and

expanded frontiers of opinion mining (Section 2.1) and comparison studies (Sec-

tion 2.2). Their intersection shapes the comparison mining research (Section 2.3).

We discuss a new method for tackling the comparison identification problem

in Chapter 3. We explore different ways to formulate this problem and determine

relation extraction as the most suitable formulation. Within the relation extraction

setup, we develop a new kernel-based approach for identifying comparative rela-

tions between entities, which relies on the syntactic structure of sentences. This

method, called Skip-node, measures similarity of two sentences via their depen-

dency tree representations. The novel kernel is shown to be empirically effective on

the real-life datasets.

We propose Comparative Relation Generative Model (CompareGem) for the

problem of comparison interpretation in Chapter 4. CompareGem connects two

levels of comparison interpretation within a graphical model framework. At the

individual comparison level it induces the meaning of each sentence or every com-

parison within a sentence. It also summarizes individual comparison interpretations

to come up with an entity ranking for a whole input corpus. The interpretations

are induced with respect to entity aspects and can be inferred in unsupervised or

supervised fashion. Through the experiments, we demonstrate effectiveness of the

proposed approach and show that the model reflects innate properties of comparison
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corpora.

We propose an approach to discover preference groups within a population of

rankers. We show that it is possible and productive to extract groups with disagree-

ing preferences. The approach is to use a graphical model called Plackett-Luce

regressions mixture to cluster such latent preference groups (see Chapter 5). We

demonstrate effectiveness of the model through the empirical evaluation.

To explain the comparisons made within a preference group, we use a topic

modeling approach. If an entity is represented by its textual representation, then

we show in Chapter 6, that for a corpus of entity documents, topics aligned with

comparisons can be successfully induced. These topics then can be used to ex-

plain the comparison decisions. The approach we present is called CompareLDA, a

specialized supervised topic model with pairwise comparison labels.

These four components form a pipeline for processing written opinions with

comparisons. The pipeline starts from identifying comparisons in texts via the Skip-

node kernel. Then it proceeds with interpreting these comparisons. The interpre-

tation process is conducted at the level of individual comparisons and at the aggre-

gated level. CompareGem is used to construct the both interpretations. When the

comparisons of different users presumably are in disagreement, it is resolved and

captured via the Plackett-Luce regression mixture model. Within one preference

group, the comparison decisions made by users can be explained by CompareLDA.

Future Work This work outlines a backbone of comparison mining from text

and provides initial research on the comparison mining components. It rather serves

as the beginning of a long journey, than the conclusion. The doors are opened to ex-

plore different paradigms of solutions, for example, deep and representation learn-

ing. As the deep learning replaced a substantial amount of the language processing

research, it is still limited in applications, where the data are scarce and clear inter-

pretation of decisions is required. Comparison mining is one of these fields due to

the rarity of comparisons and rankings in general. As the more and more data are

available, these paradigms may appear to be plausible.
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Another angle, which seems attractive for exploration is joint analysis of the

comparison mining components. We refer to in-vivo evaluation of comparison min-

ing components that solve a particular task, for instance, ranking electronic products

based on their reviews. The concern here is the system architecture as a whole: how

to design and select a system that is more suitable for this task.

Comparisons attract attention of various science fields, studies in linguistics fo-

cus on their grammatical representation [38, 182], studies in psychology address

questions of choice evaluation [66]. Could computational ideas and techniques al-

ter and assist the multidisciplinary research across the field? Formal linguistics

theories of grammar may help to shape the mathematical model for identifying and

interpreting comparisons. The result of computational comparison mining, in turn,

can provide data to study affective and decision-making aspects of reviewers.

126



BIBLIOGRAPHY

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation

of recommender systems: A survey of the state-of-the-art and possible ex-

tensions. IEEE transactions on knowledge and data engineering, 17(6):734–

749, 2005.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In

Proceedings of the International Conference on Data Engineering (ICDE),

pages 3–14, 1995.

[3] Cédric Archambeau and Francois Caron. Plackett-Luce regression: A new

Bayesian model for polychotomous data. In Conference on Uncertainty in

Artificial Intelligence (UAI’2012), 2012.

[4] Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vijayaraghavan.

Learning mixtures of ranking models. In Advances in Neural Information

Processing Systems, pages 2609–2617, 2014.

[5] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential

pattern mining using a bitmap representation. In Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (KDD), pages 429–435, 2002.

[6] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiwordnet

3.0: an enhanced lexical resource for sentiment analysis and opinion mining.

In LREC, pages 2200–2204, 2010.

127



BIBLIOGRAPHY

[7] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge Univer-

sity Press, 2012.

[8] Michael A. Bender and Martin Farach-Colton. The lca problem revisited. In

Proceedings of the Latin American Symposium on Theoretical Informatics,

pages 88–94, 2000.

[9] James R. Bettman, Mary Frances Luce, and John W. Payne. Constructive

consumer choice processes. Journal of Consumer Research, 25(3):187–217,

1998.

[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allo-

cation. Journal of Machine Learning Research, 3(Jan):993–1022, 2003.

[11] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allo-

cation. Journal of Machine Learning Research, 3:993–1022, 2003.

[12] G. E. P. Box, J. S. Hunter, and W. G. Hunter. Statistics for Experimenters.

Wiley, 2005.

[13] Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block

designs: I. the method of paired comparisons. Biometrika, 39(3):324–345,

1952.

[14] Samuel Brody and Noemie Elhadad. An unsupervised aspect-sentiment

model for online reviews. In NAACL HLT, pages 804–812, 2010.

[15] Caroline Brun, Diana Nicoleta Popa, and Claude Roux. Xrce: Hybrid classi-

fication for aspect-based sentiment analysis. In Proceedings of the 8th Inter-

national Workshop on Semantic Evaluation (SemEval 2014), pages 838–842,

2014.

[16] Razvan C. Bunescu and Raymond J. Mooney. A shortest path dependency

kernel for relation extraction. In Proceedings of the Conference on Human

128



BIBLIOGRAPHY

Language Technology and Empirical Methods in Natural Language Process-

ing (HLT), pages 724–731, 2005.

[17] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Greg Hullender. Learning to rank using gradient descent. In

ICML, pages 89–96, 2005.

[18] Erik Cambria. Affective computing and sentiment analysis. IEEE Intelligent

Systems, 31(2):102–107, 2016.

[19] Erik Cambria, Björn Schuller, Yunqing Xia, and Catherine Havasi. New

avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems,

28(2):15–21, 2013.

[20] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to

rank: from pairwise approach to listwise approach. In ICML, pages 129–136,

2007.

[21] Francois Caron, Yee Whye Teh, Thomas Brendan Murphy, et al. Bayesian

nonparametric Plackett-Luce models for the analysis of preferences for col-

lege degree programmes. The Annals of Applied Statistics, 8(2):1145–1181,

2014.

[22] Girish Chandrashekar and Ferat Sahin. A survey on feature selection meth-

ods. Computers & Electrical Engineering, 40(1):16–28, 2014.

[23] Chia-Hui Chang, Mohammed Kayed, Moheb R. Girgis, and Khaled F.

Shaalan. A survey of web information extraction systems. IEEE transac-

tions on knowledge and data engineering, 18(10):1411–1428, 2006.

[24] Jonathan Chang and David M. Blei. Relational topic models for document

networks. In AIStats, pages 81–88, 2009.

[25] Jonathan Chang, Jordan Boyd-Graber, and David M. Blei. Connections be-

tween the lines: augmenting social networks with text. In Proceedings of the

129



BIBLIOGRAPHY

15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 169–178, 2009.

[26] Danqi Chen and Christopher D. Manning. A fast and accurate dependency

parser using neural networks. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 740–750, 2014.

[27] Jose M. Chenlo and David E. Losada. An empirical study of sentence

features for subjectivity and polarity classification. Information Sciences,

280(1):275–288, 2014.

[28] Michael Collins and Nigel Duffy. Convolution kernels for natural language.

In Advances in Neural Information Processing Systems (NIPS), pages 625–

632, 2001.

[29] Michael Collins and Nigel Duffy. New ranking algorithms for parsing and

tagging: Kernels over discrete structures, and the voted perceptron. In Pro-

ceedings of the Annual Meeting on Association for Computational Linguis-

tics (COLING), pages 263–270, 2002.

[30] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

Learning, 20(3):273–297, 1995.
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